Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 087804    DOI: 10.1088/0256-307X/30/8/087804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Fabrication of Low-Density Long-Wavelength InAs Quantum Dots using a Formation-Dissolution-Regrowth Method
ZHANG Shi-Zhu, YE Xiao-Ling**, XU Bo, LIU Shu-Man, ZHOU Wen-Fei, WANG Zhan-Guo
Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
Cite this article:   
ZHANG Shi-Zhu, YE Xiao-Ling, XU Bo et al  2013 Chin. Phys. Lett. 30 087804
Download: PDF(721KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Low-density (109cm?2), long-wavelength (more than 1300 nm at room temperature) InAs/GaAs quantum dots (QDs) with only 1.75-mono-layer (ML) InAs deposition were achieved by using a formation-dissolution-regrowth method. Firstly, small high-density InAs QDs were formed at 490°C, then the substrate temperature was ramped up to 530°C, and another 0.2 ML InAs was added. After this process, the density of the InAs QDs became much lower, and their size became much larger. The full width at half maximum of the photoluminescence peak of the low density, long-wavelength InAs QDs was as small as 27.5 meV.
Received: 09 April 2013      Published: 21 November 2013
PACS:  78.67.Hc (Quantum dots)  
  68.65.Hb (Quantum dots (patterned in quantum wells))  
  68.37.Ps (Atomic force microscopy (AFM))  
  61.82.Fk (Semiconductors)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/087804       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/087804
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Shi-Zhu
YE Xiao-Ling
XU Bo
LIU Shu-Man
ZHOU Wen-Fei
WANG Zhan-Guo
[1] Bennett P A, Copel M, Cahill D, Falta J and Tromp R M 1992 Phys. Rev. Lett. 69 1224
[2] Knill E, Laflamme R and Milburn G J 2001 Nature 409 46
[3] Santori C, Pelton M, Solomon G, Dale Y and Yamamoto E 2001 Phys. Rev. Lett. 86 1502
[4] Yuan Z L, Kardynal B E, Stevenson R M, Shields A J, Lobo C J, Cooper K, Beattie N S, Ritchie D A and Pepper M 2002 Science 295 102
[5] Kamiya I, Tanaka I, Ohtsuki O and Sakaki H 2002 Physica E 13 1172
[6] Ohmori M, Kawazu T, Torii K, Takahashi T and Sakaki H 2008 Appl. Phys. Express 1 061202
[7] Sun J, Jin P and Wang Z G 2004 Nanotechnology 15 1763
[8] Chia C, Chua S J, Miao Z L and Chye Y H 2004 Appl. Phys. Lett. 85 567
[9] Mukhametzhanov I, Wei Z, Heitz R and Madhukar A 1999 Appl. Phys. Lett. 75 85
[10] Saravanan S and Shimizu H 2006 J. Cryst. Growth 289 14
[11] Seravalli L, Trevisi G and Frigeri P 2012 CrystEngComm 14 6833
[12] Seravalli L, Trevisi G, Frigeri P, Rivas D, Munoz-Matutano G, Suarez I, Alen B, Canet-Ferrer J and Martinez-Pastor J P 2011 Appl. Phys. Lett. 98 173112
[13] Huang S S, Niu Z C, Ni H Q, Zhan F, Zhao H, Sun Z and Xia J B 2007 Chin. Phys. Lett. 24 1025
[14] Nakata Y, Mukai K, Sugawara M, Ohtsubo K, Ishikawa H and Yokoyama N 2000 J. Cryst. Growth 208 93
[15] Heyn C, Endler D, Zhang K and Hansen W 2000 J. Cryst. Growth 210 421
[16] Heyn C 2002 Phys. Rev. B 66 075307
[17] Hu D Z, Trampert A and Schaadt D M 2010 J. Cryst. Growth 312 447
[18] Pohl U W, Potschke K, Schliwa A, Guffarth F, Bimberg D, Zakharov N D, Werner P, Lifshits M B, Shchukin V A and Jesson D E 2005 Phys. Rev. B 72 245332
Related articles from Frontiers Journals
[1] Li-Guo Qin, Qin Wang. Modulating the Lasing Performance of the Quantum Dot-Cavity System by Adding a Resonant Driving Field[J]. Chin. Phys. Lett., 2017, 34(1): 087804
[2] Zun-Ren Lv, Hai-Ming Ji, Xiao-Guang Yang, Shuai Luo, Feng Gao, Feng Xu, Tao Yang. Large Signal Modulation Characteristics in the Transition Regime for Two-State Lasing Quantum Dot Lasers[J]. Chin. Phys. Lett., 2016, 33(12): 087804
[3] R. Nasehi, S. H. Asadpour, H. Rahimpour Soleimani, M. Mahmoudi. Controlling the Goos–Hänchen Shift via Incoherent Pumping Field and Electron Tunneling in the Triple Coupled InGaAs/GaAs Quantum Dots[J]. Chin. Phys. Lett., 2016, 33(01): 087804
[4] WU Xue-Fei, DOU Xiu-Ming, DING Kun, ZHOU Peng-Yu, NI Hai-Qiao, NIU Zhi-Chuan, ZHU Hai-Jun, JIANG De-Sheng, ZHAO Cui-Lan, SUN Bao-Quan. Second-Order Correlation Function for Asymmetric-to-Symmetric Transitions due to Spectrally Indistinguishable Biexciton Cascade Emission[J]. Chin. Phys. Lett., 2015, 32(12): 087804
[5] WANG Hai-Yan, SU Dan, YANG Shuang, DOU Xiu-Ming, ZHU Hai-Jun, JIANG De-Sheng, NI Hai-Qiao, NIU Zhi-Chuan, ZHAO Cui-Lan, SUN Bao-Quan. Au Microdisk-Size Dependence of Quantum Dot Emission from the Hybrid Metal-Distributed Bragg Reflector Structures Employed for Single Photon Sources[J]. Chin. Phys. Lett., 2015, 32(10): 087804
[6] WANG Xiao-Bo, YAN Ling-Ling, LI Yong, LI Xin-Jian. Time-Resolved Photoluminescence Study of Silicon Nanoporous Pillar Array[J]. Chin. Phys. Lett., 2015, 32(09): 087804
[7] YANG Shuang, DOU Xiu-Ming, YU Ying, NI Hai-Qiao, NIU Zhi-Chuan, JIANG De-Sheng, SUN Bao-Quan. Single-Photon Emission from GaAs Quantum Dots Embedded in Nanowires[J]. Chin. Phys. Lett., 2015, 32(07): 087804
[8] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 087804
[9] LI Shi-Guo, GONG Qian, CAO Chun-Fang, WANG Xin-Zhong, YAN Jin-Yi, WANG Hai-Long. Junction-Temperature Measurement in InAs/InP(100) Quantum-Dot Lasers[J]. Chin. Phys. Lett., 2015, 32(01): 087804
[10] FANG Dai-Feng, WANG Zhong-Ping, DAI Ru-Cheng, ZHANG Zeng-Ming, DING Ze-Jun. Temperature Dependence of Luminescence of CdS:Mn/ZnS Core-Shell Quantum Dots[J]. Chin. Phys. Lett., 2014, 31(05): 087804
[11] YANG Wen-Xing, CHEN Ai-Xi, BAI Yan-Feng, LU Jia-Wei. Carrier-Envelope-Phase Control of Single-Electron Transport in Coupled Quantum Dots[J]. Chin. Phys. Lett., 2013, 30(11): 087804
[12] LV Xue-Qin, JIN Peng, CHEN Hong-Mei, WU Yan-Hua, WANG Fei-Fei, WANG Zhan-Guo. Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure[J]. Chin. Phys. Lett., 2013, 30(11): 087804
[13] QU Jun-Rong, ZHENG Jian-Bang, WU Guang-Rong, CAO Chong-De. Bulk Heterojunction Photovoltaic Devices Based on a Poly(2-Methoxy, 5-Octoxy)-1, 4-Phenylenevinylene-Single Walled Carbon Nanotube-ZnSe Quantum Dots Active Layer[J]. Chin. Phys. Lett., 2013, 30(10): 087804
[14] LUO Shuai, JI Hai-Ming, GAO Feng, YANG Xiao-Guang, LIANG Ping, ZHAO Ling-Juan, YANG Tao. InAs/InGaAsP/InP Quantum Dot Lasers Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(6): 087804
[15] YUE Li, GONG Qian, YAN Jin-Yi, CAO Chun-Fang, LIU Qing-Bo, WANG Yang, CHENG Ruo-Hai, WANG Hai-Long, LI Shi-Guo. High Intensity Single-Mode Peak Observed in the Lasing Spectrum of InAs/GaAs Quantum Dot Laser[J]. Chin. Phys. Lett., 2013, 30(2): 087804
Viewed
Full text


Abstract