Chin. Phys. Lett.  2013, Vol. 30 Issue (8): 087805    DOI: 10.1088/0256-307X/30/8/087805
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Low-Threshold Surface Plasmon Lasing using the Band Edge Mode in a Bi-Periodic Groove Array
LI Jia-Qi, DONG Zheng-Gao**, QIU Teng, ZHAI Ya
Department of Physics, Southeast University, Nanjing 211189
Cite this article:   
LI Jia-Qi, DONG Zheng-Gao, QIU Teng et al  2013 Chin. Phys. Lett. 30 087805
Download: PDF(898KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study surface plasmon lasing based on periodic and bi-periodic groove arrays etched on a silver substrate. It is interesting to find that the bi-periodic structure can open a clear band gap of surface plasmon polaritons near the first Brillouin zone boundary, and thus it is promising to utilize the band edge modes of surface plasmon polaritons. A low threshold for the surface plasmon lasing effect is demonstrated numerically, owing to the low group velocity of the band edge mode, which provides a feasible way to design surface plasmon lasers.
Received: 03 April 2013      Published: 21 November 2013
PACS:  78.67.Pt (Multilayers; superlattices; photonic structures; metamaterials)  
  42.70.Qs (Photonic bandgap materials)  
  42.60.Lh (Efficiency, stability, gain, and other operational parameters)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/8/087805       OR      https://cpl.iphy.ac.cn/Y2013/V30/I8/087805
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Jia-Qi
DONG Zheng-Gao
QIU Teng
ZHAI Ya
[1] Otto A 1968 Z. Phys. 216 398
[2] Kneipp K, Wang Y, Kneipp H, Perelman L T, Itzkan I, Dasari R and Feld M S 1997 Phys. Rev. Lett. 78 1667
[3] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
[4] Fang N, Lee H, Sun C and Zhang X 2005 Science 308 534
[5] Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
[6] M I Stockman 2008 Nat. Photon. 2 327
[7] Zheludev N I, Prosvirnin S L, Papasimakis N and Fedotov V A 2008 Nat. Photon. 2 351
[8] Liu S Y, Li J F, Zhou F, Gan L and Li Z Y 2011 Opt. Lett. 36 1296
[9] Deng Z L, Dong J W, Wang H Z, Cheng S H and Li J 2013 AIP Adv. 3 032138
[10] Cao Y, Wei Z, Li W, Fang A, Li H, Jiang X, Chen H and Chan C T 2013 Plasmonics 8 793
[11] Zhang X, Liu H T and Zhong Y 2012 J. Opt. 14 125003
[12] Pan J, Chen Z, Chen J, Zhan P, Tang C J and Wang Z L 2012 Opt. Lett. 37 1181
[13] Dong Z G, Li J Q, Shao J, Yu X Q, Wang Y K and Zhai Y 2013 Chin. Phys. B 22 044209
[14] Li J Q, Zhang Y, Mei T and Fiddy M 2010 Opt. Express 18 23626
[15] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[16] Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu Y M, Li B H, Qiu X G, Chang W H, Chen L J, Shvets G, Shih C K and Gwo S 2012 Science 337 450
[17] Sakoda K 2005 Optical Properties of Photonic Crystals (Berlin: Springer-Verlag)
[18] Barnes W L, Preist T W, Kitson S C and Sambels J R 1996 Phys. Rev. B 54 6227
[19] Barnes W L, Murray W A, Dintinger J, Devaux E and Ebbesen T W 2004 Phys. Rev. Lett. 92 107401
[20] Li J Q, Liu S Q, Huang C P, Li T, Wang Q J and Zhu Y Y 2008 J. Opt. A: Pure Appl. Opt. 10 075202
[21] Steele J M, Moran C E, Lee A, Aguirre C M and Halas N J 2003 Phys. Rev. B 68 205103
[22] Collin S, Sauvan C, Billaudeau C, Pardo F, Rodier J C, Pelouard J L and Lalanne P 2009 Phys. Rev. B 79 165405
[23] Raether H 1988 Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Berlin: Springer-Verlag)
[24] Okamoto T, H'Dhili F and Kawata S 2004 Appl. Phys. Lett. 85 3968
[25] Feng J and Okamoto T 2005 Opt. Lett. 30 2302
[26] Kocabas A, Senlik S S and Aydinli A 2008 Phys. Rev. B 77 195130
[27] Palik E D 1991 Handbook of Optical Constants in Solids II (Boston: MA)
[28] Moharam M G and Gaylord T K 1981 J. Opt. Soc. Am. 71 811
[29] Okamoto T, Simonen J and Kawata S 2008 Phys. Rev. B 77 115425
[30] C F Klingshirn 2007 Semiconductor Optics 3rd edn (Berlin: Springer-Verlag)
[31] Zentgraf T, Zhang S, Oulton R F and Zhang X 2009 Phys. Rev. B 80 195415
[32] Liu J T, Xu B Z, Jing Z, Cai L K and Song G F 2012 Chin. Phys. B 21 107303
[33] Du G Q, Jiang H T, Li H Q, Zhang Y W and Chen H 2008 Chin. Phys. Lett. 25 2900
[34] Plotz G A, Simon H J and Tucciarone J M 1979 J. Opt. Soc. Am. 69 419
Related articles from Frontiers Journals
[1] Xiang Xiong, Zhao-Yuan Zeng, Ruwen Peng, and Mu Wang. Directional Chiral Optical Emission by Electron-Beam-Excited Nano-Antenna[J]. Chin. Phys. Lett., 2023, 40(1): 087805
[2] Pei-Chao Cao, Yu-Gui Peng, Ying Li, and Xue-Feng Zhu. Phase-Locking Diffusive Skin Effect[J]. Chin. Phys. Lett., 2022, 39(5): 087805
[3] Peng Chen, Xianglin Kong, Jianfei Han, Weihua Wang, Kui Han, Hongyu Ma, Lei Zhao, and Xiaopeng Shen. Wide-Angle Ultra-Broadband Metamaterial Absorber with Polarization-Insensitive Characteristics[J]. Chin. Phys. Lett., 2021, 38(2): 087805
[4] Quan-Wen Hou, Jia-Chi Li , and Xiao-Peng Zhao . Isotropic Thermal Cloaks with Thermal Manipulation Function[J]. Chin. Phys. Lett., 2021, 38(1): 087805
[5] Xueyan Li, Han Lin, Yuejin Zhao, and Baohua Jia. Diffraction-Limited Imaging with a Graphene Metalens[J]. Chin. Phys. Lett., 2020, 37(10): 087805
[6] Yanyan Cao, Bocheng Yu, Yangyang Fu, Lei Gao, and Yadong Xu. Phase-Gradient Metasurfaces Based on Local Fabry–Pérot Resonances[J]. Chin. Phys. Lett., 2020, 37(9): 087805
[7] Zhenyu Fang , Haofei Xu , Yaqin Zheng , Yuelin Chen , and Zhang-Kai Zhou. Multiplexed Metasurfaces for High-Capacity Printing Imaging[J]. Chin. Phys. Lett., 2020, 37(7): 087805
[8] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 0, (): 087805
[9] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings *[J]. Chin. Phys. Lett., 0, (): 087805
[10] Meng-Yao Yan , Bi-Jun Xu, Zhi-Chao Sun , Zhen-Dong Wu , Bai-Rui Wu . Terahertz Perfect Absorber Based on Asymmetric Open-Loop Cross-Dipole Structure[J]. Chin. Phys. Lett., 2020, 37(6): 087805
[11] Chen Huang , Qian-Ju Song , Peng Hu , Shi-Wei Dai , Hong Xiang, Dezhuan Han. Bound States in the Continuum in One-Dimensional Dimerized Plasmonic Gratings[J]. Chin. Phys. Lett., 2020, 37(6): 087805
[12] Shuai-Meng Wang, Xiao-Hong Sun, De-Li Chen, Fan Wu. GaP-Based High-Efficiency Elliptical Cylinder Metasurface in Visible Light[J]. Chin. Phys. Lett., 2020, 37(5): 087805
[13] Bin Sun, Fei-Feng Xie, Shuai Kang, You-chang Yang, Jian-Qiang Liu. A Novel Method for PIT Effects Based on Plasmonic Decoupling[J]. Chin. Phys. Lett., 2019, 36(1): 087805
[14] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 087805
[15] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 087805
Viewed
Full text


Abstract