Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 077306    DOI: 10.1088/0256-307X/30/7/077306
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The CV and G/ωV Electrical Characteristics of 60Co γ-Ray Irradiated Al/Si3N4/p-Si (MIS) Structures
S. Zeyrek1**, A. Turan1, M. M. Bülbül2
1Department of Physics, Faculty of Arts and Sciences, Dumlup?nar University, 43100, Kütahya, Turkey
2Department of Physics, Faculty of Sciences, Gazi University, 06500, Be?evler, Ankara, Turkey
Cite this article:   
S. Zeyrek, A. Turan, M. M. Bülbül 2013 Chin. Phys. Lett. 30 077306
Download: PDF(610KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The influence of 60Co (γ-ray) irradiation on the electrical characteristics of Al/Si3N4/p-Si (MIS) structures is investigated using capacitance-voltage (CV) and conductance-voltage (G/ωV) measurements. The MIS structures are exposed to a 60Co γ radiation source at a dose of 0.7 kGy/h, with a total dose range of 0–100 kGy. The CV and G/ωV properties are measured before and after 60Co γ-ray irradiation at 500 kHz and room temperature. It is found that the capacitance and conductance values decrease with the increase in the total dose due to the irradiation-induced defects at the interface. The results also indicate that γ radiation causes an increase in the barrier height ?B, Fermi energy EF and depletion layer width WD. The interface state density (Nss), using the Hill–Coleman method and dependent on radiation dose, is determined from the CV and G/ωV measurements and decreases with an increase in the radiation dose. The decrease in the interface states can be attributed to the decrease in the recombination centers and the passivation of the Si surface due to the deposition insulator layer (Si3N4). In addition, it is clear that the acceptor concentration NA decreases with increasing radiation dose. The profile of series resistance Rs for various radiation doses is obtained from forward and reverse-biased CV and G/ωV measurements, and its values decrease with increasing radiation dose, while it increases with increasing voltage in the accumulation region
Received: 05 March 2013      Published: 21 November 2013
PACS:  73.40.-c (Electronic transport in interface structures)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  42.88.+h (Environmental and radiation effects on optical elements, devices, and systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/077306       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/077306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
S. Zeyrek
A. Turan
M. M. Bülbül
[1] Sze S M 1981 Physics of Semiconductor Devices (New York: Wiley)
[2] Rhoderick E H and Williams R H 1988 Metal-Semiconductor Contacts (Oxford: Clarendon Press)
[3] Cowley A M and Sze S M 1965 J. Appl. Phys. 36 3212
[4] Card H C and Rhoderick E H 1971 J. Phys. D 4 1589
[5] Singh A et al 1990 J. Appl. Phys. 68 3475
[6] Chattopadhyay P and Daw A N 1986 Solid-State Electron. 29 555
[7] Alt?ndal ? Karadeniz S, Tu?luo?lu N and Tataro?lu A 2003 Solid-State Electron. 47 1847
[8] Zeyrek S et al 2006 Appl. Surf. Sci. 252 2999
[9] Lee B H et al 2000 Appl. Phys. Lett. 76 1926
[10] Reed J et al 1994 J. Appl. Phys. 75 1826
[11] Yüzer H et al 2000 Spectrochim. Acta Part B 55 991
[12] Zainninger K H and HolmesSiedle A G 1967 RCA Rev. 208 39
[13] Winokur P S et al 1976 IEEE Trans. Nucl. Sci. 23 1580
[14] Da Silva Jr. E F et al 1987 IEEE Trans. Nucl. Sci. 34 1190
[15] Ma T P and Dressendorfer P V 1989 Ionizing Radiation Effect in MOS Devices and Circuits (New York: Wiley)
[16] Ma T P 1989 Semicond. Sci. Technol. 4 1061
[17] Oldham T R 1999 Ionizing Radiation Effects in MOS Oxides (Singapore: World Scientific
[18] Chin M R and Ma T P 1983 Appl. Phys. Lett. 42 883
[19] Feteha M Y et al 2002 Renewable Energy 26 113
[20] Kaschieva S et al 2004 Vacuum 76 307
[21] UmanaMembreno G A et al 2003 IEEE Trans. Electron Devicesces 50 2326
[22] Tüzün ? Alt?ndal ? and Oktik ? 2008 Renewable Energy 33 286
[23] Kinoshita A et al 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 541 213
[24] Tataro?lu A and Alt?ndal ? 2006 Nucl. Instrum. Methods Phys. Res. Sect. B 252 257
[25] Naruke K et al 1983 IEEE Trans. Nucl. Sci. 30 4054
[26] Chrisey D B and Hubler G K 1994 Pulsed Laser Deposition of Thin Films (New York: Wiley)
[27] Auciello O and Engemann J 1993 Multicomponent and Multilayered Thin Films for Advanced Microtechnologies: Techniques Fundamentals and Devices (Kluwer: Dordrech)
[28] Tataro?lu A and Alt?ndal ? 2007 Nucl. Instrum. Methods Phys. Res. Sect. A 580 1588
[29] D?kme I et al 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 791
[30] Ta?c?o?lu I et al 2010 Radiat. Phys. Chem. 79 457
[31] Tataro?lu A et al 2007 Nucl. Instrum. Methods Phys. Res. Sect. B 254 273
[32] Karata? ? Türüt A and Alt?ndal ? 2009 Radiat. Phys. Chem. 78 130
[33] Sztkowski J and Sieranski K 1992 Solid-State Electron. 35 1013
[34] Cova P et al 1997 J. Appl. Phys. 82 5217
[35] Singh A 1985 Solid-State Electron. 28 223
[36] Nicollian E H and Brews J R 1982 MOS Physics and Technology (New York: John Willey & Sons)
[37] Tataro?lu A et al 2003 Microelectron. J. 34 1043
[38] Sah C 1991 Fundamental of Solid State Electronics (Singapore: World Scientific)
[39] Karata? ? Türüt A and Alt?ndal ? 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 555 260
[40] Kinoshita A et al 2005 Nucl. Instrum. Methods Phys. Res. Sect. A 541 213
[41] De Vasconcelos E A and Da Silva Jr E F 1997 Semicond. Sci. Technol. 12 1032
[42] Akkal B et al 2000 Vacuum 57 219
[43] Nicollian E H and Goetzberger A 1965 Appl. Phys. Lett. 7 216
[44] Nicollian E H and Goetzberger A 1967 Bell Syst. Tech. J. 46 1055
[45] Hung K and Cheng Y C 1987 J. Appl. Phys. 62 4204
[46] Norde H 1979 J. Appl. Phys. 50 5052
[47] Hill W A and Coleman C C 1980 Solid-State Electron. 23 987
Related articles from Frontiers Journals
[1] Zi-Tao Zhang, Yu-Jie Qiao, Ting-Na Shao, Qiang Zhao, Xing-Yu Chen, Mei-Hui Chen, Fang-Hui Zhu, Rui-Fen Dou, Hai-Wen Liu, Chang-Min Xiong, and Jia-Cai Nie. Anomalous Metallic State Driven by Magnetic Field at the LaAlO$_{3}$/KTaO$_{3}$ (111) Interface[J]. Chin. Phys. Lett., 2023, 40(3): 077306
[2] V. D. Esin, A. A. Avakyants, A. V. Timonina, N. N. Kolesnikov, and E. V. Deviatov. Second-Harmonic Response in Magnetic Nodal-Line Semimetal Fe$_3$GeTe$_2$[J]. Chin. Phys. Lett., 2022, 39(9): 077306
[3] Yu Zhang, Qingyun Zhang, Youqi Ke, and Ke Xia. Giant Influence of Clustering and Anti-Clustering of Disordered Surface Roughness on Electronic Tunneling[J]. Chin. Phys. Lett., 2022, 39(8): 077306
[4] Cheng Cao, Shengru Chen, Jun Deng, Gang Li, Qinghua Zhang, Lin Gu, Tian-Ping Ying, Er-Jia Guo, Jian-Gang Guo, and Xiaolong Chen. Two-Dimensional Electron Gas with High Mobility Forming at BaO/SrTiO$_{3}$ Interface[J]. Chin. Phys. Lett., 2022, 39(4): 077306
[5] Xiang Zhang, Zhaozheng Lyu, Guang Yang, Bing Li, Yan-Liang Hou, Tian Le, Xiang Wang, Anqi Wang, Xiaopei Sun, Enna Zhuo, Guangtong Liu, Jie Shen, Fanming Qu, and Li Lu. Anomalous Josephson Effect in Topological Insulator-Based Josephson Trijunction[J]. Chin. Phys. Lett., 2022, 39(1): 077306
[6] Yang Ma, Jiasen Niu, Wenyu Xing, Yunyan Yao, Ranran Cai, Jirong Sun, X. C. Xie, Xi Lin, and Wei Han. Superconductor-Metal Quantum Transition at the EuO/KTaO$_{3}$ Interface[J]. Chin. Phys. Lett., 2020, 37(11): 077306
[7] Weihao Cao, Matisse Wei-Yuan Tu, Jiang Xiao, and Wang Yao. Giant Spin Transfer Torque in Atomically Thin Magnetic Bilayers[J]. Chin. Phys. Lett., 2020, 37(10): 077306
[8] Yong-Hua Cao, Jin-Tao Bai, and Hong-Jian Feng. Perovskite Termination-Dependent Charge Transport Behaviors of the CsPbI$_{3}$/Black Phosphorus van der Waals Heterostructure[J]. Chin. Phys. Lett., 2020, 37(10): 077306
[9] Yi-Fan He , Lei-Xi Wang , Zhi-Xing Xiao , Ya-Wei Lv, Lei Liao , and Chang-Zhong Jiang . Normal Strain-Induced Tunneling Behavior Promotion in van der Waals Heterostructures[J]. Chin. Phys. Lett., 2020, 37(8): 077306
[10] Zong-Peng Song, Hai-Ou Zhu, Wen-Tao Shi, Da-Lin Sun, Shuang-Chen Ruan. Ultrafast charge transfer in dual graphene-WS$_{2}$ van der Waals quadrilayer heterostructures[J]. Chin. Phys. Lett., 2018, 35(12): 077306
[11] Yan-Jing He, Xiao-Yan Tang, Yi-Fan Jia, Ci-Qi Zhou, Yu-Ming Zhang. Temperature-Dependent Effect of Near-Interface Traps on SiC MOS Capacitance[J]. Chin. Phys. Lett., 2018, 35(10): 077306
[12] Zhi-Fu Zhu, He-Qiu Zhang, Hong-Wei Liang, Xin-Cun Peng, Ji-Jun Zou, Bin Tang, Guo-Tong Du. Characterization of Interface State Density of Ni/p-GaN Structures by Capacitance/Conductance-Voltage-Frequency Measurements[J]. Chin. Phys. Lett., 2017, 34(9): 077306
[13] Jun Jiang, An-Quan Jiang. Nanosecond Characterization of Regional Domain Imprint from Fast Domain Switching Currents in Pb(Zr,Ti)O$_{3}$ Thin Films[J]. Chin. Phys. Lett., 2016, 33(02): 077306
[14] ZHOU Shu-Xing, QI Ming, AI Li-Kun, XU An-Huai, WANG Li-Dan, DING Peng, JIN Zhi. Effects of Si δ-Doping Condition and Growth Interruption on Electrical Properties of InP-Based High Electron Mobility Transistor Structures[J]. Chin. Phys. Lett., 2015, 32(09): 077306
[15] LI Lin, HAN Bai, SONG Wei, WANG Xuan, LEI Qing-Quan. The Effect of the Semiconductive Screen on Space Charge Suppression in Cross-Linked Polyethylene[J]. Chin. Phys. Lett., 2014, 31(10): 077306
Viewed
Full text


Abstract