Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 077305    DOI: 10.1088/0256-307X/30/7/077305
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
The Unconventional Transport Properties of Dirac Fermions in Graphyne
LIN Xin, WANG Hai-Long, PAN Hui, XU Huai-Zhe**
State Key Laboratory of Software Development Environment, Department of Physics, Beihang University, Beijing 100191
Cite this article:   
LIN Xin, WANG Hai-Long, PAN Hui et al  2013 Chin. Phys. Lett. 30 077305
Download: PDF(778KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A two-band Hamiltonian for β-graphyne is derived by the k?p method. The energy dispersions around the Dirac points are analytically obtained depending on the relative amplitude of the hopping terms t1/t2, and the Dirac cones are elliptical when ?2t1/t2j. This interesting feature is useful for direction-dependent wave filter devices.
Received: 28 March 2013      Published: 21 November 2013
PACS:  73.43.Cd (Theory and modeling)  
  73.61.Wp (Fullerenes and related materials)  
  73.23.Ad (Ballistic transport)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/077305       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/077305
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIN Xin
WANG Hai-Long
PAN Hui
XU Huai-Zhe
[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Beenakker W J 2008 Rev. Mod. Phys. 80 1337
[3] Vozmediano M A H, Katsnelson M I and Guinea F 2010 Phys. Rep. 496 109
[4] Zhang Y, Tan J W, Stormer H L and Kim P 2005 Nature 438 201
[5] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[6] Novoselov K S, Cann E M, Morozov S V, Falko V I, Katsnelson M I, Zeitler U, Jiang D, Schedin F and Geim A K 1870 Nature 2 177
[7] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[8] Morozov S V, Novoselov K S, Katsnelson M I, Schedin F, Elias D C, Jaszczak J A and Geim A K 2008 Phys. Rev. Lett. 100 016602
[9] Novoselov K S, Falko V I, Colombo L, Gellert P R, Schwab M G and Kim K 2012 Nature 490 192
[10] Lin X, Wang H L, Pan H and Xu H Z 2011 Chin. Phys. B 20 047302
[11] Malko D, Neiss C, Vines F and Gorling A 2012 Phys. Rev. Lett. 108 086804
[12] Baughman R H, Eckhardt H and Kertesz M 1987 J. Chem. Phys. 87 6687
[13] Marsden J A, Palmer G J and Haley M M 2003 Eur. J. Org. Chem. 2003 2355
[14] Yoshimura T, Inaba A, Sonoda M, Tahara K, Tobe Y and Villiams R V 2006 Org. Lett. 8 2933
[15] Haley M M 2008 Pure Appl. Chem. 80 519
[16] Diederich F and Kivala M 2010 Adv. Mater. 22 803
[17] Kim B G and Choi H J 2012 Phys. Rev. B 86 115435
[18] Cao J, Tang C P and Xiong S J 2012 Physica B 407 4387
[19] Liu Z, Yu G D, Yao H B, Liu L, Jiang L W and Zheng Y S 2012 New J. Phys. 14 113007
[20] Huang H Q, Duan W H and Liu Z R 2013 New J. Phys. 15 023004
Related articles from Frontiers Journals
[1] Na Jiang and Min Lu. Topological Distillation by Principal Component Analysis in Disordered Fractional Quantum Hall States[J]. Chin. Phys. Lett., 2020, 37(11): 077305
[2] Min Lu, Na Jiang, Xin Wan. Quasihole Tunneling in Disordered Fractional Quantum Hall Systems[J]. Chin. Phys. Lett., 2019, 36(8): 077305
[3] Hua-Ling Yu, Zhang-Yin Zhai, Xin-Tian Bian. Integer Quantum Hall Effect in a Two-Orbital Square Lattice with Chern Number $C=2$[J]. Chin. Phys. Lett., 2016, 33(11): 077305
[4] Jian-Hui Yuan, Ni Chen, Hua Mo, Yan Zhang, Zhi-Hai Zhang. Tunneling Negative Magnetoresistance via $\delta$ Doping in a Graphene-Based Magnetic Tunnel Junction[J]. Chin. Phys. Lett., 2016, 33(03): 077305
[5] R. I. Eglitis, M. R. Philpott. Computer Modelling of Metal Dissolution in the Presence of Aqueous Electrolyte[J]. Chin. Phys. Lett., 2002, 19(3): 077305
Viewed
Full text


Abstract