FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
An Immersed Boundary-Lattice Boltzmann Simulation of Particle Hydrodynamic Focusing in a Straight Microchannel |
SUN Dong-Ke**, JIANG Di, XIANG Nan, CHEN Ke, NI Zhong-Hua** |
Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, School of Mechanical Engineering, Southeast University, Nanjing 211189
|
|
Cite this article: |
SUN Dong-Ke, JIANG Di, XIANG Nan et al 2013 Chin. Phys. Lett. 30 074702 |
|
|
Abstract An immersed boundary (IB)-lattice Boltzmamm method (LBM) coupled model is utilized to study the particle focusing in a straight microchannel. The LBM is used to solve the incompressible fluid flow over a regular Eulerian grid, while the IB method is employed to couple the bead-spring model which represents the fluid-particle interaction. After model validation, the simulations for hydrodynamic focusing of the single and multi particles are performed. The particles can be focused into the equilibrium positions under the pressure gradient and self-rotation induced forces, and the particle radius and Reynolds number are the key parameters influencing the focusing dynamics. This work demonstrates the potential usefulness of the IB-LBM model in studying the particle hydrodynamic focusing.
|
|
Received: 05 March 2013
Published: 21 November 2013
|
|
PACS: |
47.27.nd
|
(Channel flow)
|
|
47.11.-j
|
(Computational methods in fluid dynamics)
|
|
87.85.gf
|
(Fluid mechanics and rheology)
|
|
04.60.Nc
|
(Lattice and discrete methods)
|
|
|
|
|
[1] Amini H, Sollierand E, Weaver W M and DiCarlo D 2012 Proc. Natl. Acad. Sci. U.S.A. 109 11593 [2] Ookawara S, Street D and Ogawa K 2006 Chem. Eng. Sci. 61 3714 [3] D'Avino G, Romeo G, Villone M M, Greco F, Netti P A and Maffettone P L 2012 Lab Chip 12 1638 [4] Prohm C, Gierlak M and Stark H 2012 Eur. Phys. J. E 35 80 [5] Yang W and Zhou K 2012 Chin. Phys. Lett. 29 064702 [6] Qian Y H, d'Humières D and Lallemand P 1992 Europhys. Lett. 17 479 [7] Lallemand P, Luo L S and Peng Y 2007 J. Comput. Phys. 226 1367 [8] Sun D K, Zhu M F, Pan S Y and Raabe D 2011 Comput. Math. Appl. 61 3585 [9] Feng Y T, Han K and Owen D R J 2010 Int. J. Numer. Methods Eng. 81 229 [10] Ladd A J C 1994 J. Fluid Mech. 271 285 [11] Ladd A J C 1994 J. Fluid Mech. 271 311 [12] Chun B and Ladd A J C 2006 Phys. Fluids 18 031704 [13] Ku X K and Lin J Z 2009 Phys. Scr. 80 025801 [14] Kilimnik A, Mao W and Alexeev A 2011 Phys. Fluids 23 123302 [15] Sun D K, Xiang N, Chen K and Ni Z H 2013 Acta Phys. Sin. 62 024703 (in Chinese) [16] Feng Z G and Michaelides E E 2004 J. Comput. Phys. 195 602 [17] Peskin C S 2002 Acta Numer. 11 479 [18] Fogelson A L and Peskin C S 1988 J. Comput. Phys. 79 50 [19] Zhang J F, Johnson P C and Popel A S 2007 Phys. Biol. 4 285 [20] Krüger T, Varnik F and Raabe D 2011 Comput. Math. Appl. 61 3485 [21] Shen Z and He Y 2012 Chin. Phys. Lett. 29 024703 [22] Xia Y, Lu D T, Liu Y and Xu Y S 2009 Chin. Phys. Lett. 26 034702 [23] Guo Z L, Zheng C G and Shi B C 2002 Phys. Rev. E 65 046308 [24] Tsubota K I and Wada S 2010 Phys. Rev. E 81 011910 [25] Sangani A S and Acrivos A 1982 Int. J. Multiphase Flow 8 193 [26] Chen M, Yao Q, Luo L S 2006 Int. J. Comput. Fluid Dyn. 20 391 [27] Russom A, Gupta A K, Nagrath S, DiCarlo D, Edd J F and Toner M 2009 New J. Phys. 11 075025 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|