Chin. Phys. Lett.  2013, Vol. 30 Issue (7): 074301    DOI: 10.1088/0256-307X/30/7/074301
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Numerical Solution of Range-Dependent Acoustic Propagation
QIN Ji-Xing1,2**, LUO Wen-Yu1, ZHANG Ren-He1, YANG Chun-Mei1,2
1State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190
2University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
QIN Ji-Xing, LUO Wen-Yu, ZHANG Ren-He et al  2013 Chin. Phys. Lett. 30 074301
Download: PDF(855KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The direct global matrix approach can be applied to modeling of range-dependent sound propagation in order to achieve numerically stable and accurate solutions. By solving the global system directly, this method features high efficiency as well as accuracy by avoiding error accumulation. It is an important issue to solve linear systems numerically in the direct global matrix approach, especially for the large-scale problems. An efficient and memory-saving algorithm is developed for solving the global system, in which the global coefficient matrix is treated as a block pentadiagonal matrix. As a result, this numerical model has the ability to solve large-scale problems on regular computers. Numerical examples are also presented to demonstrate the accuracy and efficiency of this method.
Received: 26 April 2013      Published: 21 November 2013
PACS:  43.30.Bp (Normal mode propagation of sound in water)  
  43.30.Gv (Backscattering, echoes, and reverberation in water due to combinations of boundaries)  
  02.10.Yn (Matrix theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/7/074301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I7/074301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
QIN Ji-Xing
LUO Wen-Yu
ZHANG Ren-He
YANG Chun-Mei
[1] Collis J M, Siegmann W L, Jensen F B, Zampolli M, Küsel E T and Collins M D 2008 J. Acoust. Soc. Am. 123 51
[2] Pierce A D 1965 J. Acoust. Soc. Am. 37 19
[3] Evans R B 1983 J. Acoust. Soc. Am. 74 188
[4] Zhang R H, Liu H, He Y and Akulichev V A 1994 Acta Acust. 19 408 (in Chinese)
[5] Zhang R H, He Y, Liu H and Akulichev V A 1995 J. Sound Vib. 184 439
[6] Gao B, Yang S E, Piao S C and Huang Y W 2010 Sci. Chin. Phys. Mech. Astron. 53 2216
[7] Wang H Z, Wang N and Gao D Z 2011 Chin. Phys. Lett. 28 114302
[8] Collins M D, Schmidt H and Siegmann W L 2000 J. Acoust. Soc. Am. 107 1964
[9] Thompson L L 2006 J. Acoust. Soc. Am. 119 1315
[10] Zampolli M, Tesei A, Jensen F B, Malm N and Blottman III J B 2007 J. Acoust. Soc. Am. 122 1472
[11] Milder D M 1969 J. Acoust. Soc. Am. 46 1259
[12] Rutherford S R and Hawker K E 1981 J. Acoust. Soc. Am. 70 554
[13] Fawcett J A 1992 J. Acoust. Soc. Am. 92 290
[14] Godin O A 1998 J. Acoust. Soc. Am. 103 159
[15] Athanassoulis G A, Belibassakis K A, Mitsoudis D A, Kampanis N A and Dougalis V A 2008 J. Comput. Acoust. 16 83
[16] Evans R B 1986 J. Acoust. Soc. Am. 80 1414
[17] Luo W Y, Yang C M, Qin J X and Zhang R H 2012 Sci. Chin. Phys. Mech. Astron. 55 572
[18] Luo W Y, Yang C M and Zhang R H 2012 Chin. Phys. Lett. 29 014302
[19] Jensen F B, Kuperman W A, Porter M B and Schmidt H 2011 Computational Ocean Acoustics 2nd edn (New York: Springer) p 341
[20] Chen F, Lu Q and Yuan Z J 2008 J. Hefei Univ. Technol. 31 1904 (in Chinese)
[21] Buckingham M J and Tolstoy A 1990 J. Acoust. Soc. Am. 87 1511
[22] Jensen F B 1998 J. Acoust. Soc. Am. 104 1310
Related articles from Frontiers Journals
[1] Ze-Zhong Zhang, Wen-Yu Luo, Ren-He Zhang. An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems[J]. Chin. Phys. Lett., 2018, 35(8): 074301
[2] Fei-Long Zhu, Eric I. Thorsos, Feng-Hua Li. Coupled Perturbed Modes over Sloping Penetrable Bottom[J]. Chin. Phys. Lett., 2017, 34(7): 074301
[3] LI Jun, LI Zheng-Lin, REN Yun, LI Wen, ZHANG Ren-He. Horizontal-Longitudinal Correlations of Acoustic Field in Deep Water[J]. Chin. Phys. Lett., 2015, 32(06): 074301
[4] LUO Wen-Yu, ZHANG Ren-He. A Benchmark Model for Three-Dimensional Sound Propagation in an Ideal Wedge-Shaped Waveguide[J]. Chin. Phys. Lett., 2015, 32(02): 074301
[5] QIN Ji-Xing, LUO Wen-Yu, ZHANG Ren-He, YANG Chun-Mei. Three-Dimensional Sound Propagation and Scattering in Two-Dimensional Waveguides[J]. Chin. Phys. Lett., 2013, 30(11): 074301
[6] NIU Hai-Qiang, ZHANG Ren-He, LI Zheng-Lin, GUO Yong-Gang, HE Li. Bubble Pulse Cancelation in the Time-Frequency Domain Using Warping Operators[J]. Chin. Phys. Lett., 2013, 30(8): 074301
[7] LUO Wen-Yu, YANG Chun-Mei, QIN Ji-Xing, ZHANG Ren-He. Sound Propagation in a Wedge with a Rigid Bottom[J]. Chin. Phys. Lett., 2012, 29(10): 074301
[8] LUO Wen-Yu**, YANG Chun-Mei, ZHANG Ren-He. Generalized Coupled-Mode Formulation for Sound Propagation in Range-Dependent Waveguides[J]. Chin. Phys. Lett., 2012, 29(1): 074301
[9] WANG Hao-Zhong, WANG Ning, GAO Da-Zhi . Data-Derived Estimation of Source Depth Using Vertical Line Array Data in Shallow Water[J]. Chin. Phys. Lett., 2011, 28(11): 074301
[10] LI Qian-Qian, **, LI Zheng-Lin, ZHANG Ren-He . Applications of Waveguide Invariant Theory to the Analysis of Interference Phenomena in Deep Water[J]. Chin. Phys. Lett., 2011, 28(3): 074301
[11] LUO Wen-Yu**, SCHMIDT Henrik. Three-Dimensional Mode Coupling around a Conical Seamount and the Use of Random Discretization[J]. Chin. Phys. Lett., 2010, 27(11): 074301
[12] LUO Wen-Yu, SCHMIDT Henrik. A Spectral Coupled-Mode Formulation for Sound Propagation around Axisymmetric Seamounts[J]. Chin. Phys. Lett., 2010, 27(9): 074301
[13] ZHANG Yan-Jun, ZHANG Ren-He, LI Feng-Hua. Frequency Dependence of Transverse Correlation Coefficient in the Yellow Sea[J]. Chin. Phys. Lett., 2010, 27(8): 074301
[14] ZHAO Zhen-Dong, WANG Ning, GAO Da-Zhi, WANG Hao-Zhong. Broadband Source Ranging in Shallow Water Using the Ω-Interference Spectrum[J]. Chin. Phys. Lett., 2010, 27(6): 074301
[15] LI Feng-Hua, ZHANG Ren-He. Frequency Dependence of Longitudinal Correlation Length inthe Yellow Sea[J]. Chin. Phys. Lett., 2008, 25(7): 074301
Viewed
Full text


Abstract