FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Tuning Properties of External Cavity Violet Semiconductor Laser |
LV Xue-Qin1,4, CHEN Shao-Wei2, ZHANG Jiang-Yong3, YING Lei-Ying3, ZHANG Bao-Ping3** |
1Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005 2Department of Physics, Xiamen University, Xiamen 361005 3Department of Electronic Engineering, Xiamen University, Xiamen 361005 4Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
|
|
Cite this article: |
LV Xue-Qin, CHEN Shao-Wei, ZHANG Jiang-Yong et al 2013 Chin. Phys. Lett. 30 074204 |
|
|
Abstract A tunable grating-coupled external cavity (EC) laser is realized by employing a GaN-based laser diode as the gain device. A tuning range of 4.47 nm from 403.82 to 408.29 nm is achieved. Detailed investigations reveal that the injection current strongly influences the performance of the EC laser. Below the free-running lasing threshold, EC laser works stably. While above the free-running lasing threshold, a Fabry–Pérot (F-P) resonance peak in the emission spectrum and a smooth kink in the output power-injection current characteristic curve are observed, suggesting the competition between the inner F-P cavity resonance and EC resonance. Furthermore, the tuning range is found to be asymmetric and occurs predominantly on the longer wavelength side. This is interpreted in terms of the asymmetric gain distribution of GaN-based quantum well material.
|
|
Received: 19 April 2013
Published: 21 November 2013
|
|
PACS: |
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
42.60.Jf
|
(Beam characteristics: profile, intensity, and power; spatial pattern formation)
|
|
|
|
|
[1] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T, Matsushita T, Sugimoto Y and Kiyoku H 1996 Appl. Phys. Lett. 69 4056 [2] Masui S, Tsukayama K, Yanamoto T, Kozaki T, Nagahama S and Mukai T 2006 Jpn. J. Appl. Phys. 45 L1223 [3] Cho J, Cho S, Kim B J, Chae S, Sone C, Nam O H, Lee J W, Park Y and Kim T I 2000 Appl. Phys. Lett. 76 1489 [4] Lv X Q, Jin P, Wang W Y and Wang Z G 2010 Opt. Express 18 8916 [5] Bird D M, Armitage J R, Kashyap R, Fatah R M A and Cameron K H 1991 Electron. Lett. 27 1115 [6] Zorabedian P and Trutna W R 1988 Opt. Lett. 13 826 [7] Chang A S P, Tan H, Bai S, Wu W, Yu Z and Chou S Y 2007 IEEE Photon. Technol. Lett. 19 1099 [8] Conroy R S, Hewett J J, Lancaster G P T, Sibbett W, Allen J W and Dholakia K 2000 Opt. Commun. 175 185 [9] Lonsdale D J, Willis A P and King T A 2002 Meas. Sci. Technol. 13 488 [10] Hildebrandt L, Knispel R, Stry S, Sacher J R and Schael F 2003 Appl. Opt. 42 2110 [11] Burns I S, Hult J and Kaminski C F 2004 Appl. Phys. B 79 491 [12] Hult J, Burns I S and Kaminski C F 2005 Appl. Opt. 44 3675 [13] Tanaka T, Takahashi K, Sako K, Kasegawa R, Toishi M, Watanabe K, Samuels D and Takeya M 2007 Appl. Opt. 46 3583 [14] Holc K, Bielecki Z, Wojtas J, Perlin P, Goss J, Czy?ewski A, Magryta P and Stacewicz T 2010 Opt. Appl. 40 641 [15] Gade N and Osmundsen J H 1983 IEEE J. Quantum Electron. 19 1238 [16] Chow W W, Girndt A and Koch S W 1998 Opt. Express 2 119 [17] Chen Z Z, Qi S L, Liu P, Yu T J, Wang C D, He Z K, Tong Y Z, Pan Y B, Hao M S and Zhang G Y 2009 Phys. Status Solidi C 6 S711 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|