CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Adsorption and Electronic Structure of Sr and Ag Atoms on Graphite Surfaces: a First-Principles Study |
LUO Xiao-Feng1, FANG Chao2, LI Xin1, LAI Wen-Sheng1**, SUN Li-Feng2, LIANG Tong-Xiang2 |
1Advanced Material Laboratory, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 2Beijing Key Laboratory of Fine Ceramics, Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084
|
|
Cite this article: |
LUO Xiao-Feng, FANG Chao, LI Xin et al 2013 Chin. Phys. Lett. 30 066801 |
|
|
Abstract The adsorption behaviors of radioactive strontium and silver nuclides on the graphite surface in a high-temperature gas-cooled reactor are studied by first-principles theory using generalized gradient approximation (GGA) and local density approximation (LDA) pseudo-potentials. It turns out that Sr prefers to be absorbed at the hollow of the carbon hexagonal cell by 0.54 eV (GGA), while Ag likes to sit right above the carbon atom with an adsorption energy of almost zero (GGA) and 0.45 eV (LDA). Electronic structure analysis reveals that Sr donates its partial electrons of the 4p and 5s states to the graphite substrate, while Ag on graphite is a physical adsorption without any electron transfer.
|
|
Received: 11 December 2012
Published: 31 May 2013
|
|
PACS: |
68.43.Bc
|
(Ab initio calculations of adsorbate structure and reactions)
|
|
68.43.Fg
|
(Adsorbate structure (binding sites, geometry))
|
|
73.20.At
|
(Surface states, band structure, electron density of states)
|
|
28.41.Ak
|
(Theory, design, and computerized simulation)
|
|
|
|
|
[1] Liu Y Z and Cao J Z 2002 Nucl. Eng. Des. 218 81 [2] Zecho T, Güttler A, Sha X W and Jackson B 2002 J. Chem. Phys. 117 8486 [3] Shi G S, Wang Z G, Zhao J J, Hu J and Fang H P 2011 Chin. Phys. B 20 068101 [4] Mellita C and Sharon F 2005 J. Phys.: Condens. Matter 17 R995 [5] Li Z Y, Hock K M and Palmer R E 1991 Phys. Rev. Lett. 67 12 [6] Ancilotto F and Toigo F 1993 Phys. Rev. B 47 20 [7] Gleeson M, Kasemo B and Chakarov D 2003 Surf. Sci. 524 L77 [8] Li Z Y, Hock K M, Palmer R E and Annett J F 1991 J. Phys.: Condens. Matter 3 S103 [9] Hunt M R C, Durston P J and Palmer R E 1996 Surf. Sci. 364 266 [10] Ishida H and Palmer R E 1992 Phys. Rev. B 46 15484 [11] Ancilotto F and Toigo F 1993 Phys. Rev. B 47 13713 [12] Hjortstam O, Wills J M, Johansson B and Eriksson O 1998 Phys. Rev. B 58 13191 [13] Kohn W and Sham L 1965 Phys. Rev. 140 A1133 [14] Kresse G and Hafner J 1993 Phys. Rev. B 47 558 [15] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169 [16] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15 [17] Bl?chl P E 1994 Phys. Rev. B 50 17953 [18] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244 [19] Perdew J P and Zunger A 1981 Phys. Rev. B 23 5048 [20] Vosko S H, Wilk L and Nusair M 1980 Can. J. Phys. 58 1200 [21] Sha X W and Jackson B 2002 Surf. Sci. 496 318 [22] Jensen P and Blase X 2004 Surf. Sci. 564 173 [23] Zhao X Y and Vanderbilt D 2002 Phys. Rev. B 65 233106 [24] Kresse G, Marsman M and Furthmüller J 2012 VASP the Guide (http://cms.mpi.univie.ac.at/VASP/) p 113 [25] Koichi M and Fujio I 2008 J. Appl. Crystallogr. 41 653 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|