Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 067101    DOI: 10.1088/0256-307X/30/6/067101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
First-Principles Study of the Structural, Electronic and Optical Properties of Hexagonal LiIO3
YAO Gang1,2, CHEN Yu3, AN Xin-You2, JIANG Zhong-Qian2, CAO Lin-Hong1, WU Wei-Dong1,2, ZHAO Yan2**
1State Key Laboratory Cultivation Base for Nonmetal Composites and Functional Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010
2Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, CAEP, Mianyang 621900
3College of Science, Inner Mongolia University of Technology, Hohhot 010051
Cite this article:   
YAO Gang, CHEN Yu, AN Xin-You et al  2013 Chin. Phys. Lett. 30 067101
Download: PDF(605KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The structural parameters, electronic structure, chemical bonding and optical properties of hexagonal LiIO3 are investigated in the framework of density functional theory. The calculated lattice parameters are in agreement with the previous experimental work. The band structure, density of states, and Mulliken charge population are obtained, and indicate that hexagonal LiIO3 has an indirect band gap of 2.81 eV. Furthermore, the optical properties are also calculated and analyzed in detail. It is shown that hexagonal LiIO3 is a promising dielectric material.
Received: 29 December 2012      Published: 31 May 2013
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  71.20.Nr (Semiconductor compounds)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/067101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/067101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAO Gang
CHEN Yu
AN Xin-You
JIANG Zhong-Qian
CAO Lin-Hong
WU Wei-Dong
ZHAO Yan
[1] Rosenzweig A and Morosin B 1966 Acta Crystallogr. 20 758
[2] Matsumura S 1971 Mater. Res. Bull. 6 469
[3] Lemos V, Mendes Filho J, Melo F E A, Katiyar R S and Cerdeira F 1983 Phys. Rev. B 28 2985
[4] Kitaura M, Fujita N, Itoh M and Nakagawa H 2006 Phys. Rev. B 73 115110
[5] Haussühl S 1968 Phys. Status Solidi B 29 K159
[6] Li Y Y 1984 Chin. Phys. Lett. 1 49
[7] Zheng Y X 1989 Chin. Prog. Phys. 9 17
[8] Galez C, Rosso C, Teisseyre Y, Crettez J M, Bourson P, Medeiros Ribeiro G, Righi A and Moreira R L 1995 Solid State Commun. 93 1013
[9] Mugnier Y, Galez C, Crettez J M, Bourson P and Bouillot J 2000 Solid State Commun. 115 619
[10] Mugnier Y, Galez C, Crettez J M, Bourson P, Opagiste C and Bouillot J 2002 J. Solid State Chem. 168 76
[11] Xu J J, Yue X and Rupp R A 1996 Phys. Rev. B 54 16618
[12] Xu J J, Kabelka H, Rupp R A, Laeri F and Vieze U 1998 Phys. Rev. B 57 9581
[13] Sun Q, Rupp R A, Fally M, Vietze U and Laeri F 2001 Opt. Commun. 189 151
[14] Teyssier J, Dantec R L, Galez C and Bouillot J 2003 Opt. Mater. 22 391
[15] Laeri F, Jumgen R, Angelows G, Vietze U, Engel T, Wurzt M and Hilgenberg D 1995 Appl. Phys. B 61 351
[16] Gaffar M A and Fadl A A El 1999 J. Phys. Chem. Solids 60 1633
[17] Takizawa K, Okada M and Ieiri S 1977 Opt. Commun. 23 279
[18] Segall M D, Lindan P J D, Probert M, Pickard C J, Hasnip P J and Clark S J 2002 J. Phys.: Condens. Matter 14 2717
[19] Hamann D R, Schluter M and Chiang C 1979 Phys. Rev. Lett. 43 1494
[20] Wang Y and Perdew J P 1991 Phys. Rev. B 44 13298
[21] Monkhorst H J and Pack H D 1976 Phys. Rev. B 13 5188
[22] Choy M M and Byer R L 1976 Phys. Rev. B 14 1693
[23] Murnaghan F D 1944 Proc. Natl. Acad. Sci. USA 30 244
[24] Liang J K, Rao G H and Zhang Y M 1989 Phys. Rev. B 39 459
[25] Hu J Z 1987 Acta Phys. Sin. 36 8 (in Chinese)
[26] Zhang W W, Cui Q L, Pan Y W, Dong S S, Liu J and Zou G T 2002 J. Phys.: Condens. Matter 14 10579
[27] Born M and Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Clarendon Press)
[28] Li C L, Wang H, Wang B and Wang R 2007 Appl. Phys. Lett. 91 071902
[29] Shen X C 1992 The Spectrum and Optical Property of Semiconductor (Beijing: Science Press)
[30] Okoye C M I 2003 J. Phys.: Condens. Matter 15 5945
[31] Cai M Q, Yin Z and Zhang M S 2003 Appl. Phys. Lett. 83 2805
[32] Kramers H A 1926 Nature 117 775
[33] Anderson O L 1963 J. Phys. Chem. Solids 24 909
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 067101
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 067101
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 067101
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 067101
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 067101
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 067101
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 067101
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 067101
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 067101
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 067101
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 067101
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 067101
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 067101
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 067101
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 067101
Viewed
Full text


Abstract