Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 060601    DOI: 10.1088/0256-307X/30/6/060601
GENERAL |
Cs 455 nm Nonlinear Spectroscopy with Ultra-narrow Linewidth
WANG Dong-Ying, WANG Yan-Fei, TAO Zhi-Ming, ZHANG Sheng-Nan HONG Ye-Long, ZHUANG Wei**, CHEN Jing-Biao**
State Key Laboratory of Advanced Optical Communication System and Network, Institute of Quantum Electronics, School of Electronics Engineering & Computer Science, Peking University, Beijing 100871
Cite this article:   
WANG Dong-Ying, WANG Yan-Fei, TAO Zhi-Ming et al  2013 Chin. Phys. Lett. 30 060601
Download: PDF(1222KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Nonlinear spectroscopy has become a useful tool in laser cooling, frequency stabilization and so on. We use the 455.5 nm light beam output of an external cavity diode laser to perform the saturation spectroscopy signal and polarization spectroscopy signal on the 6S1/27P3/2 transition in cesium. The measured linewidth of the F44,5 transition is as narrow as 1.40 MHz and that of the F32,3 transition is 1.67 MHz. Both of them are very close to the natural linewidth of about 1.2 MHz. Our result is the narrowest measured linewidth of Cs 455 nm saturation spectroscopy signal to our knowledge.
Received: 19 November 2012      Published: 31 May 2013
PACS:  06.30.Ft (Time and frequency)  
  32.30.Jc (Visible and ultraviolet spectra)  
  32.70.Jz (Line shapes, widths, and shifts)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/060601       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/060601
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WANG Dong-Ying
WANG Yan-Fei
TAO Zhi-Ming
ZHANG Sheng-Nan HONG Ye-Long
ZHUANG Wei
CHEN Jing-Biao
[1] Schultz J T, Abend S, Doering D Debs J E, Altin P A, White J D, Robins N P and Close J D 2009 Opt. Lett. 34 2321
[2] Berman P R 1991 Phys. Rev. A 43 1470
[3] Labachelerie M de, Nakagawa K, Awaji Y and Ohtsu M 1995 Opt. Lett. 20 572
[4] Arie A, Schiller S, Gustafson E K and Byer R L 1992 Opt. Lett. 17 1204
[5] Petelski T, Fattori M, Lamporesi G, Stuhler J and Tino G M 2003 Eur. Phys. J. D 22 279
[6] Schmidt O, Knaak K M, Wynands R and Meschede D 1994 Appl. Phys. B 59 167
[7] Santarelli G, Laurent P, Lemonde P and Clairon A 1999 Phys. Rev. Lett. 82 4619
[8] Gerhardt H, Matthias E, Schneider F and Timmermann A 1978 Z. Phys. A 288 327
[9] Menders J, Searcy P, Roff K and Korevaar E 1992 Opt. Lett. 17 1388
[10] Yin B and Shay T M 1991 Opt. Lett. 16 1617
[11] Yin B and Shay T M 1992 IEEE Photon. Technol. Lett. 4 488
[12] Sun X, Wang S, Chen A, Zhao M and Zeng X 1994 Opt. Commun. 111 259
[13] Wang Y, Zhang S, Wang D, Tao Z, Hong Y and Chen J 2012 Opt. Lett. 37 4059
[14] Hemmerich A McIntyre D H, Zimmermann C and Hansch T W 1990 Opt. Lett. 15 372
[15] Wang Y, Wang D, Zhang T, Hong Y, Zhang S, Tao Z, Xie X and Chen J 2013 Sci. Chin. Phys. Mech. Astron. 56 1107
[16] Wang Y, Xue X, Wang D, Zhang T, Sun Q, Hong Y, Zhuang W and Chen J 2012 Proceedings of International Frequency Control Symposium (IEEE Baltimore BC)
[17] Zang X, Zhang T and Chen J 2012 Chin. Phys. Lett. 29 090601
[18] Zhang T, Wang Y, Zang X, Zhuang W and Chen J 2013 Chin. Sci. Bull. 58 2033
[19] Vanier J and Audoin C 1988 The Quantum Physics of Atomic Frequency Standards (Philadelphia: Saunders) pp 26–37
[20] Grimm R and Mlynek J 1989 Appl. Phys. B 49 179
[21] Demtrader W 2008 Laser Spectrosc.: Experimental Techniques 2 pp 93-117
[22] Harris M L, Adams C S, Cornish S L, McLeod I C, Tarleton E and Hughes G I 2006 Phys. Rev. A 73 062509
Related articles from Frontiers Journals
[1] Bing-Kun Lu, Zhen Sun, Tao Yang, Yi-Ge Lin, Qiang Wang, Ye Li, Fei Meng, Bai-Ke Lin, Tian-Chu Li, and Zhan-Jun Fang. Improved Evaluation of BBR and Collisional Frequency Shifts of NIM-Sr2 with $7.2 \times 10^{-18}$ Total Uncertainty[J]. Chin. Phys. Lett., 2022, 39(8): 060601
[2] Xiang Zhang, Xue Deng, Qi Zang, Dongdong Jiao, Jing Gao, Dan Wang, Qian Zhou, Jie Liu, Guanjun Xu, Ruifang Dong, Tao Liu, and Shougang Zhang. Coherent Optical Frequency Transfer via a 490 km Noisy Fiber Link[J]. Chin. Phys. Lett., 2022, 39(4): 060601
[3] Dong-Jie Wang, Xiang Zhang, Jie Liu, Dong-Dong Jiao, Xue Deng, Jing Gao, Qi Zang, Dan Wang, Tao Liu, Rui-Fang Dong, and Shou-Gang Zhang. Novel Polarization Control Approach to Long-Term Fiber-Optic Frequency Transfer[J]. Chin. Phys. Lett., 2020, 37(9): 060601
[4] Si-Jia Chao, Kai-Feng Cui, Shao-Mao Wang, Jian Cao, Hua-Lin Shu, Xue-Ren Huang. Observation of $^1\!S_0$$\rightarrow$$^3\!P_0$ Transition of a $^{40}$Ca$^+$-$^{27}$Al$^+$ Quantum Logic Clock[J]. Chin. Phys. Lett., 2019, 36(12): 060601
[5] Wen-Bing Li, Qiang Hao, Yuan-Bo Du, Shao-Qing Huang, Peter Yun, Ze-Huang Lu. Demonstration of a Sub-Sampling Phase Lock Loop Based Microwave Source for Reducing Dick Effect in Atomic Clocks[J]. Chin. Phys. Lett., 2019, 36(7): 060601
[6] Chao-qun Ma, Li-Fei Wu, Jiao Gu, Yan-He Chen, Guo-Qing Chen. Delay Effect on Coherent Transfer of Optical Frequency Based on a Triple-Pass Scheme[J]. Chin. Phys. Lett., 2018, 35(8): 060601
[7] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. Erratum: An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon [Chin. Phys. Lett. 33(2016)040601][J]. Chin. Phys. Lett., 2017, 34(10): 060601
[8] Zhao-Min Jia, Xu-Hai Yang, Bao-Qi Sun, Xiao-Ping Zhou, Bo Xiang, Xin-Yu Dou. Direct Digital Frequency Control Based on the Phase Step Change Characteristic between Signals[J]. Chin. Phys. Lett., 2017, 34(9): 060601
[9] Zhao-Yang Tai, Lu-Lu Yan, Yan-Yan Zhang, Xiao-Fei Zhang, Wen-Ge Guo, Shou-Gang Zhang, Hai-Feng Jiang. Transportable 1555-nm Ultra-Stable Laser with Sub-0.185-Hz Linewidth[J]. Chin. Phys. Lett., 2017, 34(9): 060601
[10] Jie Zhang, Ke Deng, Jun Luo, Ze-Huang Lu. Direct Laser Cooling Al$^+$ Ion Optical Clocks[J]. Chin. Phys. Lett., 2017, 34(5): 060601
[11] Hui Liu, Xi Zhang, Kun-Liang Jiang, Jin-Qi Wang, Qiang Zhu, Zhuan-Xian Xiong, Ling-Xiang He, Bao-Long Lyu. Realization of Closed-Loop Operation of Optical Lattice Clock Based on $^{171}$Yb[J]. Chin. Phys. Lett., 2017, 34(2): 060601
[12] Xue Deng, Jie Liu, Dong-Dong Jiao, Jing Gao, Qi Zang, Guan-Jun Xu, Rui-Fang Dong, Tao Liu, Shou-Gang Zhang. Coherent Transfer of Optical Frequency over 112km with Instability at the 10$^{-20}$ Level[J]. Chin. Phys. Lett., 2016, 33(11): 060601
[13] Meng-Jiao Zhang, Hui Liu, Xi Zhang, Kun-Liang Jiang, Zhuan-Xian Xiong, Bao-Long LÜ, Ling-Xiang He. Hertz-Level Clock Spectroscopy of $^{171}$Yb Atoms in a One-Dimensional Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(07): 060601
[14] Kang-Kang Liu, Ru-Chen Zhao, Wei Gou, Xiao-Hu Fu, Hong-Li Liu, Shi-Qi Yin, Jian-Fang Sun, Zhen Xu, Yu-Zhu Wang. A Single Folded Beam Magneto-Optical Trap System for Neutral Mercury Atoms[J]. Chin. Phys. Lett., 2016, 33(07): 060601
[15] Yu-Xin Zhuang, Dai-Ting Shi, Da-Wei Li, Yi-Gen Wang, Xiao-Na Zhao, Jian-Ye Zhao, Zhong Wang. An Accurate Frequency Control Method and Atomic Clock Based on Coherent Population Beating Phenomenon[J]. Chin. Phys. Lett., 2016, 33(04): 060601
Viewed
Full text


Abstract