Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 060502    DOI: 10.1088/0256-307X/30/6/060502
GENERAL |
New Wronskian Representation of Solution for a Variable-Coefficient Kadomtsev–Petviashvili Equation
WU Jian-Ping**, GENG Xian-Guo
Department of Mathematics, Zhengzhou University, 100 Kexue Road, Zhengzhou 450001
Cite this article:   
WU Jian-Ping, GENG Xian-Guo 2013 Chin. Phys. Lett. 30 060502
Download: PDF(430KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Utilizing the Wronskian technique, a new Wronskian representation is proposed for a variable-coefficient Kadomtsev–Petviashvili (vcKP) equation. Furthermore, some particular forms of Wronskian determinant solutions, including N-soliton solutions, trigonometric function solutions and rational solutions, are obtained for the equation.
Received: 08 March 2013      Published: 31 May 2013
PACS:  05.45.Yv (Solitons)  
  02.30.Jr (Partial differential equations)  
  02.30.Ik (Integrable systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/060502       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/060502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
WU Jian-Ping
GENG Xian-Guo
[1] Freeman N C and Nimmo J J C 1983 Phys. Lett. A 95 1
[2] Satsuma J 1979 J. Phys. Soc. Jpn. 46 359
[3] Ma W X, Abdeljabbar A and Asaad M G 2011 Appl. Math. Comput. 217 10016
[4] Su T, Geng X G and Ma Y L 2007 Chin. Phys. Lett. 24 305
[5] Wu J P 2011 Chin. Phys. Lett. 28 050501
[6] Ma W X 2002 Phys. Lett. A 301 35
[7] Tang Y N, Tu J Y and Ma W X 2012 Appl. Math. Comput. 218 10050
[8] Ma W X 2011 Phys. Lett. A 375 3931
[9] Ge J Y, Zhang Y and Chen D Y 2008 J. Phys.: Conf. Ser. 96 012071
[10] Zhang Y, Chu L J and Guo B L 2010 Appl. Math. Comput. 217 1463
[11] Hirota R 2004 The Direct Methods in Soliton Theory (Cambridge: Cambridge University)
[12] Nimmo J J C and Freeman N C 1983 Phys. Lett. A 95 4
[13] Yao Y Z et al 2008 Commun. Theor. Phys. 49 1125
[14] Wu J P 2011 Chin. Phys. Lett. 28 060207
[15] Meng X H, Tian B and Zhang H Q 2010 Appl. Math. Comput. 217 1300
[16] Ma W X 2004 Chaos Solitons Fractals 19 163
Related articles from Frontiers Journals
[1] S. Y. Lou, Man Jia, and Xia-Zhi Hao. Higher Dimensional Camassa–Holm Equations[J]. Chin. Phys. Lett., 2023, 40(2): 060502
[2] Shubin Wang, Guoli Ma, Xin Zhang, and Daiyin Zhu. Dynamic Behavior of Optical Soliton Interactions in Optical Communication Systems[J]. Chin. Phys. Lett., 2022, 39(11): 060502
[3] Wen-Xiu Ma. Matrix Integrable Fourth-Order Nonlinear Schr?dinger Equations and Their Exact Soliton Solutions[J]. Chin. Phys. Lett., 2022, 39(10): 060502
[4] Chong Liu, Shao-Chun Chen, Xiankun Yao, and Nail Akhmediev. Modulation Instability and Non-Degenerate Akhmediev Breathers of Manakov Equations[J]. Chin. Phys. Lett., 2022, 39(9): 060502
[5] Qin Zhou, Yu Zhong, Houria Triki, Yunzhou Sun, Siliu Xu, Wenjun Liu, and Anjan Biswas. Chirped Bright and Kink Solitons in Nonlinear Optical Fibers with Weak Nonlocality and Cubic-Quantic-Septic Nonlinearity[J]. Chin. Phys. Lett., 2022, 39(4): 060502
[6] Yuan Zhao, Yun-Bin Lei, Yu-Xi Xu, Si-Liu Xu, Houria Triki, Anjan Biswas, and Qin Zhou. Vector Spatiotemporal Solitons and Their Memory Features in Cold Rydberg Gases[J]. Chin. Phys. Lett., 2022, 39(3): 060502
[7] Yiling Zhang, Chunyu Jia, and Zhaoxin Liang. Dynamics of Two Dark Solitons in a Polariton Condensate[J]. Chin. Phys. Lett., 2022, 39(2): 060502
[8] Qin Zhou. Influence of Parameters of Optical Fibers on Optical Soliton Interactions[J]. Chin. Phys. Lett., 2022, 39(1): 060502
[9] Xiao-Man Zhang, Yan-Hong Qin, Li-Ming Ling, and Li-Chen Zhao. Inelastic Interaction of Double-Valley Dark Solitons for the Hirota Equation[J]. Chin. Phys. Lett., 2021, 38(9): 060502
[10] Qi-Hao Cao  and Chao-Qing Dai. Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schr?dinger Equation[J]. Chin. Phys. Lett., 2021, 38(9): 060502
[11] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 060502
[12] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 060502
[13] Zequn Qi , Zhao Zhang , and Biao Li. Space-Curved Resonant Line Solitons in a Generalized $(2+1)$-Dimensional Fifth-Order KdV System[J]. Chin. Phys. Lett., 2021, 38(6): 060502
[14] Wei Wang, Ruoxia Yao, and Senyue Lou. Abundant Traveling Wave Structures of (1+1)-Dimensional Sawada–Kotera Equation: Few Cycle Solitons and Soliton Molecules[J]. Chin. Phys. Lett., 2020, 37(10): 060502
[15] Li-Chen Zhao, Yan-Hong Qin, Wen-Long Wang, Zhan-Ying Yang. A Direct Derivation of the Dark Soliton Excitation Energy[J]. Chin. Phys. Lett., 2020, 37(5): 060502
Viewed
Full text


Abstract