GENERAL |
|
|
|
|
Cs 455 nm Nonlinear Spectroscopy with Ultra-narrow Linewidth |
WANG Dong-Ying, WANG Yan-Fei, TAO Zhi-Ming, ZHANG Sheng-Nan HONG Ye-Long, ZHUANG Wei**, CHEN Jing-Biao** |
State Key Laboratory of Advanced Optical Communication System and Network, Institute of Quantum Electronics, School of Electronics Engineering & Computer Science, Peking University, Beijing 100871
|
|
Cite this article: |
WANG Dong-Ying, WANG Yan-Fei, TAO Zhi-Ming et al 2013 Chin. Phys. Lett. 30 060601 |
|
|
Abstract Nonlinear spectroscopy has become a useful tool in laser cooling, frequency stabilization and so on. We use the 455.5 nm light beam output of an external cavity diode laser to perform the saturation spectroscopy signal and polarization spectroscopy signal on the 6S1/2 →7P3/2 transition in cesium. The measured linewidth of the F4→4,5 transition is as narrow as 1.40 MHz and that of the F3→2,3 transition is 1.67 MHz. Both of them are very close to the natural linewidth of about 1.2 MHz. Our result is the narrowest measured linewidth of Cs 455 nm saturation spectroscopy signal to our knowledge.
|
|
Received: 19 November 2012
Published: 31 May 2013
|
|
PACS: |
06.30.Ft
|
(Time and frequency)
|
|
32.30.Jc
|
(Visible and ultraviolet spectra)
|
|
32.70.Jz
|
(Line shapes, widths, and shifts)
|
|
|
|
|
[1] Schultz J T, Abend S, Doering D Debs J E, Altin P A, White J D, Robins N P and Close J D 2009 Opt. Lett. 34 2321 [2] Berman P R 1991 Phys. Rev. A 43 1470 [3] Labachelerie M de, Nakagawa K, Awaji Y and Ohtsu M 1995 Opt. Lett. 20 572 [4] Arie A, Schiller S, Gustafson E K and Byer R L 1992 Opt. Lett. 17 1204 [5] Petelski T, Fattori M, Lamporesi G, Stuhler J and Tino G M 2003 Eur. Phys. J. D 22 279 [6] Schmidt O, Knaak K M, Wynands R and Meschede D 1994 Appl. Phys. B 59 167 [7] Santarelli G, Laurent P, Lemonde P and Clairon A 1999 Phys. Rev. Lett. 82 4619 [8] Gerhardt H, Matthias E, Schneider F and Timmermann A 1978 Z. Phys. A 288 327 [9] Menders J, Searcy P, Roff K and Korevaar E 1992 Opt. Lett. 17 1388 [10] Yin B and Shay T M 1991 Opt. Lett. 16 1617 [11] Yin B and Shay T M 1992 IEEE Photon. Technol. Lett. 4 488 [12] Sun X, Wang S, Chen A, Zhao M and Zeng X 1994 Opt. Commun. 111 259 [13] Wang Y, Zhang S, Wang D, Tao Z, Hong Y and Chen J 2012 Opt. Lett. 37 4059 [14] Hemmerich A McIntyre D H, Zimmermann C and Hansch T W 1990 Opt. Lett. 15 372 [15] Wang Y, Wang D, Zhang T, Hong Y, Zhang S, Tao Z, Xie X and Chen J 2013 Sci. Chin. Phys. Mech. Astron. 56 1107 [16] Wang Y, Xue X, Wang D, Zhang T, Sun Q, Hong Y, Zhuang W and Chen J 2012 Proceedings of International Frequency Control Symposium (IEEE Baltimore BC) [17] Zang X, Zhang T and Chen J 2012 Chin. Phys. Lett. 29 090601 [18] Zhang T, Wang Y, Zang X, Zhuang W and Chen J 2013 Chin. Sci. Bull. 58 2033 [19] Vanier J and Audoin C 1988 The Quantum Physics of Atomic Frequency Standards (Philadelphia: Saunders) pp 26–37 [20] Grimm R and Mlynek J 1989 Appl. Phys. B 49 179 [21] Demtrader W 2008 Laser Spectrosc.: Experimental Techniques 2 pp 93-117 [22] Harris M L, Adams C S, Cornish S L, McLeod I C, Tarleton E and Hughes G I 2006 Phys. Rev. A 73 062509 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|