Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 060401    DOI: 10.1088/0256-307X/30/6/060401
GENERAL |
PV Criticality of an AdS Black Hole in f(R) Gravity
CHEN Song-Bai**, LIU Xiao-Fang, LIU Chang-Qing
1Institute of Physics and Department of Physics, Hunan Normal University, Changsha 410081
2Key Laboratory of Low Dimensional Quantum Structures and Quantum Control, Ministry of Education, Hunan Normal University, Changsha 410081
Cite this article:   
CHEN Song-Bai, LIU Xiao-Fang, LIU Chang-Qing 2013 Chin. Phys. Lett. 30 060401
Download: PDF(505KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the thermodynamics of a charged AdS black hole in the special f(R) correction with the constant Ricci scalar curvature. Our results show that the f(R) correction influences the Gibbs free energy and the phase transition of system. The ratio ρc occurring at the critical point increases monotonically with the derivative term f'(R0). We also disclose that the critical exponents are the same as those of the liquid-gas phase transition in the van der Waals model, which does not depend on the f(R) correction considered here.
Received: 25 March 2013      Published: 31 May 2013
PACS:  04.70.-s (Physics of black holes)  
  95.30.Sf (Relativity and gravitation)  
  05.70.Ce (Thermodynamic functions and equations of state)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/060401       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/060401
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
CHEN Song-Bai
LIU Xiao-Fang
LIU Chang-Qing
[1] Buchdahl H A 1970 Mon. Not. R. Astron. Soc. 150 1
Starobinsky A A 1980 Phys. Lett. B 91 99
[2] Felice A D and Tsujikawa S 2010 Living Rev. Relativ. 13 3
Capozziello S and Laurentis M D 2011 arXiv:1108.6266v2[gr-qc]
[3] Nojiri S and Odintsov S D 2011 Phys. Rep. 505 59
[4] Moon T et al 2011 arXiv:1101.1153v2 [gr-qc]
[5] Larranaga A 2011 arXiv:1108.6325v1 [gr-qc]
Cembranos J A R et al 2011 arXiv:1109.4519v2 [gr-qc]
[6] Sheykhi A 2012 Phys. Rev. D 86 024013
[7] Cognola G et al 2005 J. Cosmol. Astropart. Phys. 2005 010
[8] Sebastiani L and Zerbini S 2010 arXiv:1012.5230v3 [gr-qc]
[9] Cruz-Dombriz et al 2009 Phys. Rev. D 80 124011
Cembranos J A R et al 2012 arXiv:1202.0853v1[gr-qc]
[10] Hendi S H 2010 Phys. Lett. B 690 220
Hendi S H and Momeni D 2011 Eur. Phys. J. C 71 1823
[11] Olmo G J and Garcia D R 2011 Phys. Rev. D 84 124059
Mazharimousavi S H and Halilsoy M 2011 Phys. Rev. D 84 064032
[12] Kubiznak D and Mann R B 2012 J. High Energy Phys. 2012 033
[13] Wang S et al 2006 Chin. Phys. Lett. 23 1096
Sekiwa Y 2006 Phys. Rev. D 73 084009
Banados M et al 1992 Phys. Rev. Lett. 69 1849
Banados M et al 1993 Phys. Rev. D 48 1506
Wu S Q 2005 Phys. Lett. B 608 251
Shankaranarayanan S 2003 Phys. Rev. D 67 084026
Cai R G 2002 Phys. Lett. B 525 331
Gibbons G W et al 2005 J. Geom. Phys. 53 49
Kastor D et al 2009 Class. Quantum Grav. 26 195011
Kastor D et al 2010 Class. Quantum Grav. 27 235014
[14] Gunasekaran S and Mann R B 2012 J. High Energy Phys. 2012 110
[15] Belhaj A et al 2012 Chin. Phys. Lett. 29 100401
[16] Banerjee R and Roychowdhury D 2012 Phys. Rev. D 85 104043
Banerjee R and Roychowdhury D 2012 Phys. Rev. D 85 044040
Majhi B R and Roychowdhury D 2012 Class. Quantum Grav. 29 245012
[17] Hendi S H and Vahidinia M H 2012 arXiv:1212.6128v2 [hep-th]
[18] Wei S W and Liu Y X 2013 Phys. Rev. D 87 044014
Related articles from Frontiers Journals
[1] Y. Kenedy Meitei, T. Ibungochouba Singh, I. Ablu Meitei. Quantization of Horizon Area of Kerr–Newman–de Sitter Black Hole[J]. Chin. Phys. Lett., 2019, 36(3): 060401
[2] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole: Gravitational, Electromagnetic and Massless Dirac Perturbations[J]. Chin. Phys. Lett., 2018, 35(5): 060401
[3] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 060401
[4] Jun Liang. Quasinormal Modes of a Noncommutative-Geometry-Inspired Schwarzschild Black Hole[J]. Chin. Phys. Lett., 2018, 35(1): 060401
[5] Jun Liang. The $P$–$v$ Criticality of a Noncommutative Geometry-Inspired Schwarzschild-AdS Black Hole[J]. Chin. Phys. Lett., 2017, 34(8): 060401
[6] Jun Liang. Regular Magnetic Black Hole Gravitational Lensing[J]. Chin. Phys. Lett., 2017, 34(5): 060401
[7] Xiao-Xiong Zeng, Xin-Yun Hu, Li-Fang Li. Effect of Phantom Dark Energy on Holographic Thermalization[J]. Chin. Phys. Lett., 2017, 34(1): 060401
[8] Yue-Yi Wang, Ju-Hua Chen, Yong-Jiu Wang. Stability Analysis of the Viscous Polytropic Dark Energy Model in Einstein Cosmology[J]. Chin. Phys. Lett., 2016, 33(10): 060401
[9] Belhaj A., Chabab M., El Moumni H., Masmar K., Sedra M. B.. On Hawking Radiation of 3D Rotating Hairy Black Holes[J]. Chin. Phys. Lett., 2015, 32(10): 060401
[10] ZHANG Ruan-Jing, CHEN Ju-Hua, GAN Qiao-Shan, WANG Yong-Jiu. Time-Like Geodesic Motion in Schwarzschild Spacetime with Weak-Field Limit[J]. Chin. Phys. Lett., 2015, 32(08): 060401
[11] LIAO Ping, ZHANG Ruan-Jing, CHEN Ju-Hua, WANG Yong-Jiu. Scattering of Scalar Wave by Extended Black Hole in f(R) Gravity[J]. Chin. Phys. Lett., 2015, 32(5): 060401
[12] LI Ran. Hawking Radiation of Dirac Field in the Linear Dilaton Black Hole[J]. Chin. Phys. Lett., 2014, 31(06): 060401
[13] LIU Chang-Qing. Collision of Two General Geodesic Particles around a Kerr–Newman Black Hole[J]. Chin. Phys. Lett., 2013, 30(10): 060401
[14] Kourosh Nozari, A. Yazdani. The Energy Distribution of a Noncommutative Reissner–Nordstr?m Black Hole[J]. Chin. Phys. Lett., 2013, 30(9): 060401
[15] A. Belhaj, M. Chabab, H. El Moumni, M. B. Sedra. On Thermodynamics of AdS Black Holes in Arbitrary Dimensions[J]. Chin. Phys. Lett., 2012, 29(10): 060401
Viewed
Full text


Abstract