Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 060307    DOI: 10.1088/0256-307X/30/6/060307
GENERAL |
Dynamics of Fermionic Geometric Discord beyond Single-Mode Approximations
M. Ramzan*
Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan
Cite this article:   
M. Ramzan 2013 Chin. Phys. Lett. 30 060307
Download: PDF(502KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Geometric quantum discord of fermionic systems in the relativistic regime, that is, beyond the single-mode approximation, is investigated. It is shown that geometric quantum discord for the fermionic systems in non-inertial frames converges at an infinite acceleration limit, which means that the fermionic systems become independent of the choice of Unruh modes (qR) beyond single-mode approximation. The discord may vanish or be retained depending upon the level of mixedness of the fermionic system. The dynamics of geometric discord are investigated under amplitude damping, depolarizing, phase damping and flipping channels. The vanishing behavior of discord is seen for a higher level of decoherence in the infinite acceleration limit. The depolarizing channel dominantly affects the fermionic geometric discord as compared to the amplitude and phase damping channels. This implies that the depolarizing channel has most destructive influence on the discord of the fermionic systems. However, the flipping channels have a symmetrical effect on the discord. Moreover, the discord heavily depends on the mixedness parameter of the quantum state of the fermionic systems in accelerated frames beyond single-mode approximation.
Received: 04 February 2013      Published: 31 May 2013
PACS:  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  04.62.+v (Quantum fields in curved spacetime)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/060307       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/060307
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
M. Ramzan
[1] Horodecki R et al 2009 Rev. Mod. Phys. 81 865
[2] Guhne O and Toth G 2009 Phys. Rep. 474 1
[3] Fuentes-Schuller I and Mann R B 2005 Phys. Rev. Lett. 95 120404
[4] Alsing P M et al 2006 Phys. Rev. A 74 032326
[5] Pan Q and Jing J 2008 Phys. Rev. A 77 024302
[6] Martin-Martinez E, Garay L J and León J 2010 Phys. Rev. D 82 064028
[7] Wang J et al 2009 Phys. Lett. B 677 186
[8] Hwang M R, Park D and Jung E 2010 Phys. Rev. A 82
[9] Montero M and Martín-Martínez E 2011 Phys. Rev. A 84 012337
[10] Ramzan M and Khan M K 2012 Quantum Inf. Process. 11 443
[11] Wang J and Jing J 2011 Phys. Rev. A 83 022314
[12] Brown E G et al 2012 Phys. Rev. A 86 032108
[13] Bruschi D E et al 2010 Phys. Rev. A 82 042332
[14] Montero M and Martin-Martinez E 2011 Phys. Rev. A 83 062323
[15] Montero M and Martin-Martinez E 2012 Phys. Rev. A 85 024301
[16] Chang J and Kwon Y 2012 Phys. Rev. A 85 032302
[17] Luo S L and Fu S S 2010 Phys. Rev. A 82 034302
[18] Dakic B, Vedral V and Brukner C 2010 Phys. Rev. Lett. 105 190502
[19] Girolami G and Adesso G 2012 Phys. Rev. Lett. 108 150403
[20] Breuer H P and Petruccione F 2002 The Theory of Open QuantumSystems (Oxford: Oxford University Press)
[21] Zurek W H 2003 Rev. Mod. Phys. 75 715
[22] Nielson M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
Related articles from Frontiers Journals
[1] Changhao Zhao, Yongcheng He, Xiao Geng, Kaiyong He, Genting Dai, Jianshe Liu, and Wei Chen. Multi-Mode Bus Coupling Architecture of Superconducting Quantum Processor[J]. Chin. Phys. Lett., 2023, 40(1): 060307
[2] Sheng-Chen Bai, Yi-Cheng Tang, and Shi-Ju Ran. Unsupervised Recognition of Informative Features via Tensor Network Machine Learning and Quantum Entanglement Variations[J]. Chin. Phys. Lett., 2022, 39(10): 060307
[3] Ji-Ze Xu, Li-Na Sun, J.-F. Wei, Y.-L. Du, Ronghui Luo, Lei-Lei Yan, M. Feng, and Shi-Lei Su. Two-Qubit Geometric Gates Based on Ground-State Blockade of Rydberg Atoms[J]. Chin. Phys. Lett., 2022, 39(9): 060307
[4] Yanxin Han, Zhongqi Sun, Tianqi Dou, Jipeng Wang, Zhenhua Li, Yuqing Huang, Pengyun Li, and Haiqiang Ma. Twin-Field Quantum Key Distribution Protocol Based on Wavelength-Division-Multiplexing Technology[J]. Chin. Phys. Lett., 2022, 39(7): 060307
[5] Dian Zhu, Wei-Min Shang, Fu-Lin Zhang, and Jing-Ling Chen. Quantum Cloning of Steering[J]. Chin. Phys. Lett., 2022, 39(7): 060307
[6] Lu-Ji Wang, Jia-Yi Lin, and Shengjun Wu. State Classification via a Random-Walk-Based Quantum Neural Network[J]. Chin. Phys. Lett., 2022, 39(5): 060307
[7] Wenjie Jiang, Zhide Lu, and Dong-Ling Deng. Quantum Continual Learning Overcoming Catastrophic Forgetting[J]. Chin. Phys. Lett., 2022, 39(5): 060307
[8] Zhiling Wang, Zenghui Bao, Yukai Wu , Yan Li , Cheng Ma , Tianqi Cai , Yipu Song , Hongyi Zhang, and Luming Duan. Improved Superconducting Qubit State Readout by Path Interference[J]. Chin. Phys. Lett., 2021, 38(11): 060307
[9] Keyu Su, Yunfei Wang, Shanchao Zhang, Zhuoping Kong, Yi Zhong, Jianfeng Li, Hui Yan, and Shi-Liang Zhu. Synchronization and Phase Shaping of Single Photons with High-Efficiency Quantum Memory[J]. Chin. Phys. Lett., 2021, 38(9): 060307
[10] Huan-Yu Liu, Tai-Ping Sun, Yu-Chun Wu, and Guo-Ping Guo. Variational Quantum Algorithms for the Steady States of Open Quantum Systems[J]. Chin. Phys. Lett., 2021, 38(8): 060307
[11] Cheng Xue, Zhao-Yun Chen, Yu-Chun Wu, and Guo-Ping Guo. Effects of Quantum Noise on Quantum Approximate Optimization Algorithm[J]. Chin. Phys. Lett., 2021, 38(3): 060307
[12] Anqi Shi , Haoyu Guan , Jun Zhang , and Wenxian Zhang. Long-Range Interaction Enhanced Adiabatic Quantum Computers[J]. Chin. Phys. Lett., 2020, 37(12): 060307
[13] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 060307
[14] Xin-Wei Zha , Min-Rui Wang, and Ruo-Xu Jiang . Constructing a Maximally Entangled Seven-Qubit State via Orthogonal Arrays[J]. Chin. Phys. Lett., 2020, 37(9): 060307
[15] Chen-Rui Zhang, Meng-Jun Hu, Guo-Yong Xiang, Yong-Sheng Zhang, Chuan-Feng Li, and Guang-Can Guo. Direct Strong Measurement of a High-Dimensional Quantum State[J]. Chin. Phys. Lett., 2020, 37(8): 060307
Viewed
Full text


Abstract