Chin. Phys. Lett.  2013, Vol. 30 Issue (6): 060306    DOI: 10.1088/0256-307X/30/6/060306
GENERAL |
Vortical Solitons of Three-Dimensional Bose–Einstein Condensates under Both a Bichromatic Optical Lattice and Anharmonic Potentials
LI Feng-Bo, ZONG Feng-De**, WANG Ying
Institute of Nonlinear Physics, Zhejiang Normal University, Jinhua 321004
Cite this article:   
LI Feng-Bo, ZONG Feng-De, WANG Ying 2013 Chin. Phys. Lett. 30 060306
Download: PDF(1655KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study Bose–Einstein condensate vortical solitons under both a bichromatic optical lattice and anharmonic potential. The vortical solitons are built in the form of a layer-chain structure made up of two fundamental vortices along the bichromatic optical lattice direction, which have not been reported before in the three-dimensional Bose–Einstein condensate. A variation approach is applied to find the optimum initial solutions of vortical solitons. The stabilities of the vortical solitons are confirmed by the numerical simulation of the time-dependent Gross–Pitaevskii equation. In particular, stable Bose–Einstein condensate vortical solitons with fundamental vortices of different atomic numbers in the external potential within a range of experimentally achievable timescales are found. We further manipulate the vortical solitons to an arbitrary position by steadily moving the bichromatic optical lattice, and find a stable region for the successful manipulation of vortical solitons without collapse. These results provide insight into controlling and manipulating the Bose–Einstein condensate vortical solitons for macroscopic quantum applications.
Received: 06 February 2013      Published: 31 May 2013
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  05.45.Yv (Solitons)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/6/060306       OR      https://cpl.iphy.ac.cn/Y2013/V30/I6/060306
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Feng-Bo
ZONG Feng-De
WANG Ying
[1] Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
[2] Witthaut D, Trimborn F, Kegel V and Korsch H J 2011 Phys. Rev. A 83 013609
[3] Cai X M, Chen S and Wang Y P 2011 Phys. Rev. A 84 033605
[4] Adhikari S K and Salasnich L 2009 Phys. Rev. A 80 023606
[5] Cheng Y S and Adhikari S K 2011 Phys. Rev. A 83 023620
[6] Cheng Y S and Adhikari S K 2011 Phys. Rev. A 84 023632
[7] Cheng Y S and Adhikari S K 2010 Phys. Rev. A 81 023620
[8] Adhikari S K 2010 Phys. Rev. A 81 043636
[9] Dufour G and Orso G 2012 Phys. Rev. Lett. 109 155306
[10] Collin A 2006 Phys. Rev. A 73 013611
[11] Alexander T J, Salerno M, Ostrovskaya E A and Kivshar Y S 2008 Phys. Rev. A 77 043607
[12] Gygi O, Katzgraber H G and Troyer M 2006 Phys. Rev. A 73 063606
[13] Zezyulin D A and Alfimov G L 2008 Phys. Rev. A 78 013606
[14] Mentink J and Kokkelmans S 2009 Phys. Rev. A 79 032709
[15] Zezyulin D A 2009 Phys. Rev. A 79 033622
[16] Li H C, Chen H J and Xue J K 2010 Chin. Phys. Lett. 27 030304
[17] Zhang Z Q, Wang D L, Luo X Q, He Z M and Ding J W 2011 Chin. Phys. Lett. 28 050305
[18] Parker N G, Proukakis N P and Adams C S 2010 Phys. Rev. A 81 033606
[19] Liu Y, Jia Y F and Li W D 2012 Chin. Phys. Lett. 29 040304
[20] Lundh E, Collin A and Suominen K A 2004 Phys. Rev. Lett. 92 070401
[21] Bretin V, Stock S, Seurin Y and Dalibard J 2004 Phys. Rev. Lett. 92 050403
[22] Baym G and Pethick C J 2004 Phys. Rev. A 69 043619
[23] Muruganandam P and Adhikari S K 2009 Comput. Phys. Commun. 180 1888
[24] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[25] Tikhonenkov I, Malomed B A and Vardi A 2008 Phys. Rev. A 78 043614
[26] Robinson J and Rahmat-Samii Y 2004 IEEE Trans. Antennas Propag. 52 397
[27] Wang Y, Lv J, Zhu L and Ma Y M 2010 Phys. Rev. B 82 094116
[28] Dalfovo F and Stringari S 1996 Phys. Rev. A 53 2477
[29] Kevrekidis P G, Frantzeskakis D J and Carretero-González R 2008 Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment (Vol.14) (New York: Springer)
[30] Theocharis G, Frantzeskakis D J, Carretero-González R, Kevrekidis P G and Malomed B A 2005 Phys. Rev. E 71 017602
[31] Song C S, Li J and Zong F D 2012 Chin. Phys. B 21 020306
[32] Davis M C, Carretero-González R, Shi Z, Law K J H, Kevrekidis P G and Anderson B P 2009 Phys. Rev. A 80 023604
Related articles from Frontiers Journals
[1] Haipeng Xue, Lingchii Kong, and Biao Wu. Logarithmic Quantum Time Crystal[J]. Chin. Phys. Lett., 2022, 39(8): 060306
[2] Rong Du, Jian-Chong Xing, Bo Xiong, Jun-Hui Zheng, and Tao Yang. Quench Dynamics of Bose–Einstein Condensates in Boxlike Traps[J]. Chin. Phys. Lett., 2022, 39(7): 060306
[3] Jun-Tao He, Ping-Ping Fang, and Ji Lin. Multi-Type Solitons in Spin-Orbit Coupled Spin-1 Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2022, 39(2): 060306
[4] Peng Gao, Zeyu Wu, Zhan-Ying Yang, and Wen-Li Yang. Reverse Rotation of Ring-Shaped Perturbation on Homogeneous Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2021, 38(9): 060306
[5] Zhao-Long Gu and Jian-Xin Li. Itinerant Topological Magnons in SU(2) Symmetric Topological Hubbard Models with Nearly Flat Electronic Bands[J]. Chin. Phys. Lett., 2021, 38(5): 060306
[6] Hao Li, Chong Liu, Zhan-Ying Yang, Wen-Li Yang. Quantized Superfluid Vortex Filaments Induced by the Axial Flow Effect[J]. Chin. Phys. Lett., 2020, 37(3): 060306
[7] Yu Mo, Cong Zhang, Shiping Feng, Shi-Jie Yang. Solitonic Diffusion of Wavepackets in One-Dimensional Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(12): 060306
[8] Jian-Wen Zhou, Xiao-Xun Li, Rui Gao, Wen-Shan Qin, Hao-Hao Jiang, Tao-Tao Li, Ju-Kui Xue. Modulational Instability of Trapped Two-Component Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2019, 36(9): 060306
[9] Shi-Feng Yang, Zi-Tong Xu, Kai Wang, Xiu-Fei Li, Yue-Yang Zhai, Xu-Zong Chen. A Quasi-1D Potential for Bose Gas Phase Fluctuations[J]. Chin. Phys. Lett., 2019, 36(8): 060306
[10] C. Chen, Q. Liu, T. Z. Zhang, D. Li, P. P. Shen, X. L. Dong, Z.-X. Zhao, T. Zhang, D. L. Feng. Quantized Conductance of Majorana Zero Mode in the Vortex of the Topological Superconductor (Li$_{0.84}$Fe$_{0.16}$)OHFeSe[J]. Chin. Phys. Lett., 2019, 36(5): 060306
[11] Bao-Guo Yang, Peng-Ju Tang, Xin-Xin Guo, Xu-Zong Chen, Biao Wu, Xiao-Ji Zhou. Period-Doubled Bloch States in a Bose–Einstein Condensate[J]. Chin. Phys. Lett., 2018, 35(7): 060306
[12] Peng Peng, Liang-Hui Huang, Dong-Hao Li, Zeng-Ming Meng, Peng-Jun Wang, Jing Zhang. Experimental Observation of Spin-Exchange in Ultracold Fermi Gases[J]. Chin. Phys. Lett., 2018, 35(3): 060306
[13] Xu-Dan Chai, Zi-Fa Yu, Ai-Xia Zhang, Ju-Kui Xue. Sound Wave of Spin–Orbit Coupled Bose–Einstein Condensates in Optical Lattice[J]. Chin. Phys. Lett., 2017, 34(9): 060306
[14] Zheng Zhou, Hong-Hua Zhong, Bo Zhu, Fa-Xin Xiao, Ke Zhu, Jin-Tao Tan. Collision Dynamics of Dissipative Matter-Wave Solitons in a Perturbed Optical Lattice[J]. Chin. Phys. Lett., 2016, 33(11): 060306
[15] Yu-E Li, Ju-Kui Xue. Moving Matter-Wave Solitons in Spin–Orbit Coupled Bose–Einstein Condensates[J]. Chin. Phys. Lett., 2016, 33(10): 060306
Viewed
Full text


Abstract