Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 028501    DOI: 10.1088/0256-307X/30/2/028501
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Stable Organic Field Effect Transistors with Low-Cost MoO3/Al Source-Drain Electrodes
ZHANG Hui1,2, MI Bao-Xiu1,2, LI Xin1,2, GAO Zhi-Qiang1**, ZHAO Lu1,2, HUANG Wei2
1Jiangsu Engineering Centre for Flat-Panel Displays and Solid-state Lighting and College of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210046
2Key Laboratory for Organic Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing 210046
Cite this article:   
ZHANG Hui, MI Bao-Xiu, LI Xin et al  2013 Chin. Phys. Lett. 30 028501
Download: PDF(512KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Stable organic field effect transistors (OFETs) based on copper phthalocyanine (CuPc) are reported using MoO3/Al as source-drain top contacts. By annealing the fabricated device at 130°C in air, the mobility and the stability of the OFETs can be significantly improved in comparison with the untreated device. The heat-treated devices without encapsulation show a device storage stability of nearly 400 h while the untreated one only 183 h. This improvement is suggested to be mainly attributed to the reduction of the contact barrier between CuPc and the electrode, as well as the better alignment of CuPc molecules via post annealing.
Received: 24 September 2012      Published: 02 March 2013
PACS:  85.30.Tv (Field effect devices)  
  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/028501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/028501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Hui
MI Bao-Xiu
LI Xin
GAO Zhi-Qiang
ZHAO Lu
HUANG Wei
[1] Sirringhaus H, Kawase T, Friend R H, Shimoda T, Inbasekaran M, Wu W and Woo E P 2000 Science 290 2123
[2] Crone B, Dodabalapur A, Lin Y Y, Filas R W, Bao Z, LaDuca A, Sarpeshkar R, Katz H E and Li W 2000 Nature 403 521
[3] Forrest S R 2004 Nature 428 911
[4] Yan H, Chen Z, Zheng Y, Newman C, Quinn J R, Dotz F, Kastler M and Facchetti A 2009 Nature 457 679
[5] Wang L P, Lu A X, Dou W and Wan Q 2010 Chin. Phys. Lett. 27 078502
[6] Yu S Y, Xu S A and Ma D G 2007 Chin. Phys. Lett. 24 3513
[7] An Z S, Yu J S, Jones S C, Barlow S, Yoo S H, Domercq B, Prins P, Siebbeles L D A, Kippelen B and Marder S R 2005 Adv. Mater. 17 2580
[8] Haddock J N, Zhang X H, Domercq B and Kippelen B 2005 Org. Electron. 6 182
[9] Lee J Y, Roth S and Park Y W 2006 Appl. Phys. Lett. 88 252106
[10] Takahashi T, Takenobu T, Takeya J and Iwasa Y 2006 Appl. Phys. Lett. 88 033505
[11] Zeis R, Siegrist T and Kloc Ch 2005 Appl. Phys. Lett. 86 022103
[12] Lee S, Kang S J, Jo G, Choe M, Park W, Yoon J, Kwon T, Kahng Y H, Kim D Y, Lee B H and Lee T 2011 Appl. Phys. Lett. 99 083306
[13] Chen W, Wang L, Qi D C, Chen S, Gao X Y and Wee A T S 2006 Appl. Phys. Lett. 88 184102
[14] Chu C W, Shrotriya V, Li G and Yang Y 2006 Appl. Phys. Lett. 88 153504
[15] Sarma R and Saikia D 2011 IEEE Electron Device Lett. 32 209
[16] Burrows P E and Forrest S R 1994 Appl. Phys. Lett. 64 2285
[17] Lin Y J, Li Y C, Wen T C, Huang L M, Chen Y K, Yeh H J and Wang Y H 2008 Appl. Phys. Lett. 93 043305
[18] Bai Y, Liu X, Chen L, Haq K, Khan M A, Zhu W Q, Jiang X Y and Zhang Z L 2007 Microelectron. J. 38 1185
[19] Jones B A, Facchetti A, Marks T J and Wasielewsk M R 2007 Chem. Mater. 19 11
[20] Rost H, Ficker J, Alonso J S, Leenders L and McCulloch I 2004 Synth. Met. 145 83
[21] Li Z G, Gao Z Q, Wang H S, Zhang H, Zhao X Y, Mi B X and Huang W 2012 Sci. Chin. Chem. 55 1
[22] Huang J, Hines D R, Jung B J, Bronsgeest M S, Tunnell A, Ballarotto V, Katz H E, Fuhrer M S, Williams E D and Cumings J 2011 Org. Electron. 12 1471
[23] 2008 IEEE Standard for Test Methods for the Characterization of Organic Transistors and Materials IEEE Std 1620TM -2008
[24] Rentenberger S, Vollmer A, Zojer E, Schennach R and Koch N 2006 J. Appl. Phys. 100 053701
[25] Bao Z, Lovinger A J and Dodabalapur A 1996 Appl. Phys. Lett. 69 3066
Related articles from Frontiers Journals
[1] Bojing Lu, Rumin Liu, Siqin Li, Rongkai Lu, Lingxiang Chen, Zhizhen Ye, and Jianguo Lu. Room-Temperature Processed Amorphous ZnRhCuO Thin Films with p-Type Transistor and Gas-Sensor Behaviors[J]. Chin. Phys. Lett., 2020, 37(9): 028501
[2] Yuhang Zhao , Biao Liu , Junliang Yang , Jun He, and Jie Jiang. Polymer-Decorated 2D MoS$_{2}$ Synaptic Transistors for Biological Bipolar Metaplasticities Emulation[J]. Chin. Phys. Lett., 2020, 37(8): 028501
[3] Si-Yuan Chen, Xin Yu, Wu Lu, Shuai Yao, Xiao-Long Li, Xin Wang, Mo-Han Liu, Shan-Xue Xi, Li-Bin Wang, Jing Sun, Cheng-Fa He, Qi Guo. Effects of Total-Ionizing-Dose Irradiation on Single-Event Burnout for Commercial Enhancement-Mode AlGaN/GaN High-Electron Mobility Transistors[J]. Chin. Phys. Lett., 2020, 37(4): 028501
[4] Cheng-Lei Guo, Bin-Bin Wang, Wei Xia, Yan-Feng Guo, Jia-Min Xue. A New Effect of Oxygen Plasma on Two-Dimensional Field-Effect Transistors: Plasma Induced Ion Gating and Synaptic Behavior[J]. Chin. Phys. Lett., 2019, 36(7): 028501
[5] He-Mei Zheng, Shun-Ming Sun, Hao Liu, Ya-Wei Huan, Jian-Guo Yang, Bao Zhu, Wen-Jun Liu, Shi-Jin Ding. Performance Improvement in Hydrogenated Few-Layer Black Phosphorus Field-Effect Transistors[J]. Chin. Phys. Lett., 2018, 35(12): 028501
[6] Yuan Liu, Li Wang, Shu-Ting Cai, Ya-Yi Chen, Rongsheng Chen, Xiao-Ming Xiong, Kui-Wei Geng. Temperature Dependence of Electrical Characteristics in Indium-Zinc-Oxide Thin Film Transistors from 10K to 400K[J]. Chin. Phys. Lett., 2018, 35(9): 028501
[7] Qi-Wen Zheng, Jiang-Wei Cui, Ying Wei, Xue-Feng Yu, Wu Lu, Diyuan Ren, Qi Guo. Bias Dependence of Radiation-Induced Narrow-Width Channel Effects in 65nm NMOSFETs[J]. Chin. Phys. Lett., 2018, 35(4): 028501
[8] Ya-Yi Chen, Yuan Liu, Zhao-Hui Wu, Li Wang, Bin Li, Yun-Fei En, Yi-Qiang Chen. Low-Frequency Noise in Amorphous Indium Zinc Oxide Thin Film Transistors with Aluminum Oxide Gate Insulator[J]. Chin. Phys. Lett., 2018, 35(4): 028501
[9] Jie Fan, Sheng-Ming Sun, Hai-Zhu Wang, Yong-Gang Zou. Low Specific On-Resistance SOI LDMOS with Non-Depleted Embedded P-Island and Dual Trench Gate[J]. Chin. Phys. Lett., 2018, 35(3): 028501
[10] Yi Zhang, Gen-Quan Han, Yan Liu, Huan Liu, Jin-Cheng Zhang, Yue Hao. Ohmic Contact at Al/TiO$_{2}$/n-Ge Interface with TiO$_{2}$ Deposited at Extremely Low Temperature[J]. Chin. Phys. Lett., 2018, 35(2): 028501
[11] Li Zhang, Jin-Feng Zhang, Wei-Hang Zhang, Tao Zhang, Lei Xu, Jin-Cheng Zhang, Yue Hao. Robust Performance of AlGaN-Channel Metal-Insulator-Semiconductor High-Electron-Mobility Transistors at High Temperatures[J]. Chin. Phys. Lett., 2017, 34(12): 028501
[12] Teng Ma, Qi-Wen Zheng, Jiang-Wei Cui, Hang Zhou, Dan-Dan Su, Xue-Feng Yu, Qi Guo. An Increase in TDDB Lifetime of Partially Depleted SOI Devices Induced by Proton Irradiation[J]. Chin. Phys. Lett., 2017, 34(7): 028501
[13] Guang-Xing Wan, Gui-Lei Wang, Hui-Long Zhu. Hetero-Epitaxy and Self-Adaptive Stressor Based on Freestanding Fin for the 10nm Node and Beyond[J]. Chin. Phys. Lett., 2017, 34(7): 028501
[14] Pei-Fu Du, Ping Feng, Xiang Wan, Yi Yang, Qing Wan. Amorphous InGaZnO$_{4}$ Neuron Transistors with Temporal and Spatial Summation Function[J]. Chin. Phys. Lett., 2017, 34(5): 028501
[15] Yuan Liu, Kai Liu, Rong-Sheng Chen, Yu-Rong Liu, Yun-Fei En, Bin Li, Wen-Xiao Fang. Total Ionizing Dose Radiation Effects in the P-Type Polycrystalline Silicon Thin Film Transistors[J]. Chin. Phys. Lett., 2017, 34(1): 028501
Viewed
Full text


Abstract