Chin. Phys. Lett.  2013, Vol. 30 Issue (2): 024701    DOI: 10.1088/0256-307X/30/2/024701
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Effects of Magnetic Field on Entropy Generation in Flow and Heat Transfer due to a Radially Stretching Surface
Adnan Saeed Butt*, Asif Ali
Department of Mathematics, Quaid-I-Azam University 45320, Islamabad 44000, Pakistan
Cite this article:   
Adnan Saeed Butt, Asif Ali 2013 Chin. Phys. Lett. 30 024701
Download: PDF(526KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate the effects of magnetic field on the entropy generation during fluid flow and heat transfer due to the radially stretching surface. The partial differential equations governing the flow and heat transfer phenomenon are transformed into nonlinear ordinary differential equations by using suitable similarity transformations. These equations are then solved by the homotopy analysis method and the shooting technique. The effects of the magnetic field parameter M and the Prandtl number Pr on velocity and the temperature profiles are presented. Moreover, influence of the magnetic field parameter M and the group parameter Br/Ω on the local entropy generation number Ns as well as the Bejan number Be are inspected. It is observed that the magnetic field is a strong source of entropy production in the considered problem.
Received: 19 October 2012      Published: 02 March 2013
PACS:  47.15.Cb (Laminar boundary layers)  
  44.20.+b (Boundary layer heat flow)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/2/024701       OR      https://cpl.iphy.ac.cn/Y2013/V30/I2/024701
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Adnan Saeed Butt
Asif Ali
[1] Bejan A 1982 Entropy Generation Through Heat Fluid Flow 2nd edn (New York: Wiley)
[2] Bejan A 1982 Adv. Heat Transfer 15 1
[3] Saouli S and Saouli S A 2004 Int. Commun. Heat Mass Transfer 31 879
[4] Esfahani J A and Jafarian M M 2005 Sci. Iranica 12 233
[5] Makinde O D and Aziz A 2010 Comput. Math. Appl. 60 3012
[6] Makinde O D 2006 Phys. Scr. 74 642
[7] Makinde O D 2009 Comput. Math. Appl. 58 2330
[8] Butt A S et al 2012 Phys. Scr. 85 035008
[9] Tshehla M S and Makinde O D 2011 Int. J. Phys. Sci. 6 6053
[10] Odat M Q A et al 2004 Entropy 4 293
[11] Damseh R A et al 2008 Heat Mass Transfer 44 897
[12] Saouli S A et al 2006 Entropy 8 188
[13] Makinde O D 2012 Int. J. Exergy 10 142
[14] Arikoglua A et al 2008 Appl. Energy 85 1225
[15] Makinde O D 2011 Entropy 13 1446
[16] Butt A S et al 2012 J. Mech. Sci. Tech. 26 2977
[17] Wang C Y 1990 Quart. Appl. Math. 48 601
[18] Chiam T C 1994 J. Phys. Soc. Jpn. 63 2443
[19] Kechil S A and Hashim I 2007 Chin. Phys. Lett. 24 139
[20] Ding Q and Zhang H Q 2009 Chin. Phys. Lett. 26 104701
[21] Aziz R C and Hashim I 2010 Chin. Phys. Lett. 27 110202
[22] Mukhopadhyay S 2010 Chin. Phys. Lett. 27 124401
[23] Bhattacharyya K et al 2011 Chin. Phys. Lett. 28 094702
[24] Salem M and Fathy R 2012 Chin. Phys. B 21 054701
[25] Kechil S A and Hashim I 2007 Chin. Phys. Lett. 24 139
[26] Wang C Y 2007 J. Math. Anal. Appl. 332 877
[27] Ariel P D 2009 Comput. Math. Appl. 58 2402
[28] Attia H A 2010 Italian J. Pure Appl. Math. 27 9
[29] Shahzad A et al 2012 Chin. Phys. Lett. 29 084705
[30] Liao S J 2003 Beyond Perturbation: Introduction to Homotopy Analysis Method (Florida: Boca Raton)
Related articles from Frontiers Journals
[1] Tiegang Fang, Fujun Wang. Unsteady Liquid Film Flow with a Prescribed Free-Surface Velocity[J]. Chin. Phys. Lett., 2019, 36(1): 024701
[2] Tiegang Fang, Fujun Wang. Viscous Slip MHD Flow over a Moving Sheet with an Arbitrary Surface Velocity[J]. Chin. Phys. Lett., 2018, 35(10): 024701
[3] Yong Li, Zhen-Xiang Zhou, Xue-Mao Guan, Shang-Sheng Li, Ying Wang, Xiao-Peng Jia, Hong-An Ma. B–C Bond in Diamond Single Crystal Synthesized with h-BN Additive at High Pressure and High Temperature[J]. Chin. Phys. Lett., 2016, 33(02): 024701
[4] SHI Yan-Chao, LI Jia-Jun, LIU Hao, ZUO Yong-Gang, BAI Yang, SUN Zhan-Feng, MA Dian-Li, CHEN Guang-Chao. Nano-Crystalline Diamond Films Grown by Radio-Frequency Inductively Coupled Plasma Jet Enhanced Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2015, 32(08): 024701
[5] Abdul Rehman, S. Nadeem. Mixed Convection Heat Transfer in Micropolar Nanofluid over a Vertical Slender Cylinder[J]. Chin. Phys. Lett., 2012, 29(12): 024701
[6] FANG Tie-Gang, TAO Hua, ZHONG Yong-Fang. Non-Newtonian Power-Law Fluid Flow over a Shrinking Sheet[J]. Chin. Phys. Lett., 2012, 29(11): 024701
[7] M. Erfanian Nakhchi, M. R. H. Nobari, H. Basirat Tabrizi. Non-Similarity Thermal Boundary Layer Flow over a Stretching Flat Plate[J]. Chin. Phys. Lett., 2012, 29(10): 024701
[8] Azeem Shahzad, Ramzan Ali, and Masood Khan. On the Exact Solution for Axisymmetric Flow and Heat Transfer over a Nonlinear Radially Stretching Sheet[J]. Chin. Phys. Lett., 2012, 29(8): 024701
[9] Swati Mukhopadhyay*. Heat Transfer Analysis of the Unsteady Flow of a Maxwell Fluid over a Stretching Surface in the Presence of a Heat Source/Sink[J]. Chin. Phys. Lett., 2012, 29(5): 024701
[10] M. Sajid, K. Mahmood, Z. Abbas. Axisymmetric Stagnation-Point Flow with a General Slip Boundary Condition over a Lubricated Surface[J]. Chin. Phys. Lett., 2012, 29(2): 024701
[11] Chandaneswar Midya*. Exact Solutions of Chemically Reactive Solute Distribution in MHD Boundary Layer Flow over a Shrinking Surface[J]. Chin. Phys. Lett., 2012, 29(1): 024701
[12] ZHANG Hui, FAN Bao-Chun**, CHEN Zhi-Hua . In-depth Study on Cylinder Wake Controlled by Lorentz Force[J]. Chin. Phys. Lett., 2011, 28(12): 024701
[13] Swati Mukhopadhyay . Heat Transfer in a Moving Fluid over a Moving Non-Isothermal Flat Surface[J]. Chin. Phys. Lett., 2011, 28(12): 024701
[14] FANG Tie-Gang*, ZHANG Ji, ZHONG Yong-Fang, TAO Hua . Unsteady Viscous Flow over an Expanding Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(12): 024701
[15] Tiegang FANG**, Shanshan YAO . Viscous Swirling Flow over a Stretching Cylinder[J]. Chin. Phys. Lett., 2011, 28(11): 024701
Viewed
Full text


Abstract