PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
|
|
|
|
Double-Relativistic-Electron-Layer Proton Acceleration with High-Contrast Circular-Polarization Laser Pulses |
HUANG Yong-Sheng1,2**, WANG Nai-Yan1, TANG Xiu-Zhang1, SHI Yi-Jin1, ZHANG Shan3 |
1High Power Excimer Laser Laboratory, China Institute of Atomic Energy, Beijing 102413 2Department of Engineering Physics, Tsinghua University, Beijing 100084 3Department of Physics, Beijing Normal University, Beijing 100875
|
|
Cite this article: |
HUANG Yong-Sheng, WANG Nai-Yan, TANG Xiu-Zhang et al 2013 Chin. Phys. Lett. 30 025201 |
|
|
Abstract A new laser-proton acceleration scheme consisting of two relativistic electron layers, a suprathermal electron layer and a thermal electron cloud is proposed for a0?80σ0, where a0 is the normalized laser field and σ0 is the normalized plasma surface density. This is essentially different from target normal sheath acceleration and radiation pressure acceleration. The persistent opaqueness of the first relativistic electron layer for the incident circular-polarization laser pulse and electron recirculation are key points in forming the new acceleration scheme. A proton beam with a uniform energy distribution in the energy range 1–2 GeV and a monoenergetic proton beam with hundreds of MeV have been predicted for a0=39.5.
|
|
Received: 11 October 2012
Published: 02 March 2013
|
|
|
|
|
|
[1] Mako F and Tajima T 1984 Phys. Fluids 27 1815 [2] Schwoerer H, Pfotenhauer S, Jackel O, Amthor K U, Liesfeld B, Ziegler W, Sauerbrey R, Ledingham K W D and Esirkepov T 2006 Nature 439 445 [3] Esirkepov T, Borghesi M, Bulanov S V, Mourou G, and Tajima T 2004 Phys. Rev. Lett. 92 175003 [4] Hatchett Stephen P, Brown Curtis G, Cowan Thomas E, Henry Eugene A, Johnson Joy S, Key Michael H, Koch Jeffrey A, Langdon A Bruce, Lasinski Barbara F, Lee Richard W, Mackinnon Andrew J, Pennington Deanna M, Perry Michael D, Phillips Thomas W, Roth Markus, Sangster T Craig, Singh Mike S, Snavely Richard A, Stoyer Mark A, Wilks Scott C and Kazuhito Y 2000 Phys. Plasmas 7 2076 [5] Hegelich M, Karsch S, Pretzler G, Habs D, Witte K, Guenther W, Allen M, Blazevic A, Fuchs J, Gauthier J C, Geissel M, Audebert P, Cowan T and Roth M 2002 Phys. Rev. Lett. 89 085002 [6] Snavely R A, Key M H, Hatchett S P, Cowan T E, Roth M, Phillips T W, Stoyer M A, Henry E A, Sangster T C, Singh M S, Wilks S C, MacKinnon A, Offenberger A, Pennington D M, Yasuike K, Langdon A B, Lasinski B F, Johnson J, Perry M D and Campbell E M 2000 Phys. Rev. Lett. 85 2945 [7] B M Hegelich, B J Albright, J Cobble, K Flippo, S Letzring, M Paffett, H Ruhl, J Schreiber, R K Schulze and J C Ferna'ndez 2006 Nature 439 441 [8] Henig A, Steinke S, Schnürer M, Sokollik T, Horlein R, Kiefer D, Jung D, Schreiber J, Hegelich B M, Yan X Q, Meyer-ter-Vehn J, Tajima T, Nickles P V, Sandner W and Habs D 2009 Phys. Rev. Lett. 103 245003 [9] Jung D, Yin L, Albright B J, Gautier D C, Horlein R, Kiefer D, Henig A, Johnson R, Letzring S, Palaniyappan S, Shah R, Shimada T, Yan X Q, Bowers K J, Tajima T, Fernández J C, Habs D and Hegelich B M 2011 Phys. Rev. Lett. 107 115002 [10] Zhuo H B, Chen Z L, Yu W, Sheng Z M, Yu M Y, Jin Z and Kodama R 2010 Phys. Rev. Lett. 105 065003 [11] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X and Chen J E 2008 Phys. Rev. Lett. 100 135003 [12] Bulanov S V, Echkina E Yu, Esirkepov T Zh, Inovenkov I N, Kando M, Pegoraro F and Korn G 2010 Phys. Rev. Lett. 104 135003 [13] Klimo O, Psikal J and Limpouch J 2008 Phys. Rev. Sepc. Top. Accel. Beams 11 031301 [14] Chen M, Pukhov A and Yu T P 2009 Phys. Rev. Lett. 103 024801 [15] Eliasson B, Liu Chuan S, Shao Xi, Sagdeev Roald Z and Shukla Padma K 2009 New J. Phys. 11 073006 [16] Zhang Z M, He X T, Sheng Z M and Yu M Y 2010 Phys. Plasmas 17 043110 [17] Zhang Z M, He X T, Sheng Z M and Yu M Y 2011 Phys. Plasmas 18 023110 [18] Nieter C and Cary J R 2004 J. Comput. Phys. 196 448 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|