CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure |
LV Xue-Qin1,2, JIN Peng1**, CHEN Hong-Mei1, WU Yan-Hua1, WANG Fei-Fei1, WANG Zhan-Guo1 |
1Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 2Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005
|
|
Cite this article: |
LV Xue-Qin, JIN Peng, CHEN Hong-Mei et al 2013 Chin. Phys. Lett. 30 118102 |
|
|
Abstract Broadband light emission is obtained from a chirped multiple InAs/InGaAs/GaAs quantum dot (QD) structure. The thickness of the InGaAs strain-reducing layer (SRL) is used as the tuning parameter to adjust the light emission property of each QD layer in the chirped structure. It is shown from the photoluminescence (PL) measurement that the SRL thickness has a strong influence on the PL peak position, linewidth, and intensity. By constructing the chirped QD structure comprising five groups of QD layers with different SRL thicknesses, a broadband electroluminescence emission with the full width at half maximum of 202 nm is realized, indicating the feasibility of chirped multiple InAs QD layers on broadening the emission spectrum.
|
|
Received: 21 June 2013
Published: 30 November 2013
|
|
|
|
|
|
[1] Zhang Z Y, Wang Z G, Xu B, Jin P, Sun Z Z and Liu F Q 2004 IEEE Photon. Technol. Lett. 16 27 [2] Zhukov A E and Kovsh A R 2008 Quantum Electron. 38 409 [3] Wu J, Lv X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202 [4] Akiyama T, Sugawara M and Arakawa Y 2007 Proc. IEEE 95 1757 [5] Liu N, Jin P and Wang Z G 2012 Chin. Phys. B 21 117305 [6] Liang Z M, Jin C, Jin P, Wu J and Wang Z G 2009 Chin. Phys. Lett. 26 017802 [7] Liu N, Jin P and Wang Z G 2005 Electron. Lett. 41 1400 [8] Zhang Z Y, Luxmoore I J, Jin C Y, Liu H Y, Jiang Q, Groom K M, Childs D T, Hopkinson M, Cullis A G and Hogg R A 2007 Appl. Phys. Lett. 91 081112 [9] Li X K, Jin P, An Q, Wang Z C, Lv X Q, Wei H, Wu J, Wu J and Wang Z G 2012 IEEE Photon. Technol. Lett. 24 1188 [10] Han I K, Heo D C, Song J D, Lee J I and Lee J I 2004 J. Korean Phys. Soc. 45 1193 [11] Han I K, Bae H C, Cho W J, Lee J I, Park H L, Kim T G and Lee J I 2005 Jpn. J. Appl. Phys. 44 5692 [12] Li L H, Rossetti M, Fiore A, Occhi L and Velez C 2005 Electron. Lett. 41 41 [13] Li L H, Rossetti M, Fiore A, Occhi L and Velez C 2006 Phys. Status Solidi B 243 3988 [14] Li L H, Rossetti M and Fiore A 2005 J. Cryst. Growth 278 680 [15] Ray S K, Groom K M, Beattie M D, Liu H Y, Hopkinson M and Hogg R A 2006 IEEE Photon. Technol. Lett. 18 58 [16] Yoo Y C, Han I K and Lee J I 2007 Electron. Lett. 43 1045 [17] Kovsh A, Krestnikov I, Livshits D, Mikhrin S, Weimert J and Zhukov A 2007 Opt. Lett. 32 793 [18] Nevsky A Yu, Bressel U, Ernsting I, Eisele Ch, Okhapkin M, Schiller S, Gubenko A, Livshits D, Mikhrin S, Krestnikov I and Kovsh A 2008 Appl. Phys. B 92 501 [19] Haffouz S, Barrios P J, Normandin R, Poitras D and Lu Z 2012 Opt. Lett. 37 1103 [20] Chen S M, Zhou K J, Zhang Z Y, Childs D T D, Hugues M, Ramsay A J and Hogg R A 2012 Appl. Phys. Lett. 100 041118 [21] Nishi K, Saito H, Sugou S and Lee J S 1999 Appl. Phys. Lett. 74 1111 [22] Guffarth F, Heitz R, Schliwa A, Stier O, Ledentsov N N, Kovsh A R, Ustinov V M and Bimberg D 2001 Phys. Rev. B 64 085305 [23] Lv X Q, Jin P and Wang Z G 2010 IEEE Photon. Technol. Lett. 22 1799 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|