Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 118102    DOI: 10.1088/0256-307X/30/11/118102
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Broadband Light Emission from Chirped Multiple InAs Quantum Dot Structure
LV Xue-Qin1,2, JIN Peng1**, CHEN Hong-Mei1, WU Yan-Hua1, WANG Fei-Fei1, WANG Zhan-Guo1
1Key Laboratory of Semiconductor Materials Science and Beijing Key Laboratory of Low-dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083
2Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361005
Cite this article:   
LV Xue-Qin, JIN Peng, CHEN Hong-Mei et al  2013 Chin. Phys. Lett. 30 118102
Download: PDF(583KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Broadband light emission is obtained from a chirped multiple InAs/InGaAs/GaAs quantum dot (QD) structure. The thickness of the InGaAs strain-reducing layer (SRL) is used as the tuning parameter to adjust the light emission property of each QD layer in the chirped structure. It is shown from the photoluminescence (PL) measurement that the SRL thickness has a strong influence on the PL peak position, linewidth, and intensity. By constructing the chirped QD structure comprising five groups of QD layers with different SRL thicknesses, a broadband electroluminescence emission with the full width at half maximum of 202 nm is realized, indicating the feasibility of chirped multiple InAs QD layers on broadening the emission spectrum.
Received: 21 June 2013      Published: 30 November 2013
PACS:  81.07.Ta (Quantum dots)  
  73.21.La (Quantum dots)  
  78.67.Hc (Quantum dots)  
  85.60.Jb (Light-emitting devices)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/118102       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/118102
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LV Xue-Qin
JIN Peng
CHEN Hong-Mei
WU Yan-Hua
WANG Fei-Fei
WANG Zhan-Guo
[1] Zhang Z Y, Wang Z G, Xu B, Jin P, Sun Z Z and Liu F Q 2004 IEEE Photon. Technol. Lett. 16 27
[2] Zhukov A E and Kovsh A R 2008 Quantum Electron. 38 409
[3] Wu J, Lv X Q, Jin P, Meng X Q and Wang Z G 2011 Chin. Phys. B 20 064202
[4] Akiyama T, Sugawara M and Arakawa Y 2007 Proc. IEEE 95 1757
[5] Liu N, Jin P and Wang Z G 2012 Chin. Phys. B 21 117305
[6] Liang Z M, Jin C, Jin P, Wu J and Wang Z G 2009 Chin. Phys. Lett. 26 017802
[7] Liu N, Jin P and Wang Z G 2005 Electron. Lett. 41 1400
[8] Zhang Z Y, Luxmoore I J, Jin C Y, Liu H Y, Jiang Q, Groom K M, Childs D T, Hopkinson M, Cullis A G and Hogg R A 2007 Appl. Phys. Lett. 91 081112
[9] Li X K, Jin P, An Q, Wang Z C, Lv X Q, Wei H, Wu J, Wu J and Wang Z G 2012 IEEE Photon. Technol. Lett. 24 1188
[10] Han I K, Heo D C, Song J D, Lee J I and Lee J I 2004 J. Korean Phys. Soc. 45 1193
[11] Han I K, Bae H C, Cho W J, Lee J I, Park H L, Kim T G and Lee J I 2005 Jpn. J. Appl. Phys. 44 5692
[12] Li L H, Rossetti M, Fiore A, Occhi L and Velez C 2005 Electron. Lett. 41 41
[13] Li L H, Rossetti M, Fiore A, Occhi L and Velez C 2006 Phys. Status Solidi B 243 3988
[14] Li L H, Rossetti M and Fiore A 2005 J. Cryst. Growth 278 680
[15] Ray S K, Groom K M, Beattie M D, Liu H Y, Hopkinson M and Hogg R A 2006 IEEE Photon. Technol. Lett. 18 58
[16] Yoo Y C, Han I K and Lee J I 2007 Electron. Lett. 43 1045
[17] Kovsh A, Krestnikov I, Livshits D, Mikhrin S, Weimert J and Zhukov A 2007 Opt. Lett. 32 793
[18] Nevsky A Yu, Bressel U, Ernsting I, Eisele Ch, Okhapkin M, Schiller S, Gubenko A, Livshits D, Mikhrin S, Krestnikov I and Kovsh A 2008 Appl. Phys. B 92 501
[19] Haffouz S, Barrios P J, Normandin R, Poitras D and Lu Z 2012 Opt. Lett. 37 1103
[20] Chen S M, Zhou K J, Zhang Z Y, Childs D T D, Hugues M, Ramsay A J and Hogg R A 2012 Appl. Phys. Lett. 100 041118
[21] Nishi K, Saito H, Sugou S and Lee J S 1999 Appl. Phys. Lett. 74 1111
[22] Guffarth F, Heitz R, Schliwa A, Stier O, Ledentsov N N, Kovsh A R, Ustinov V M and Bimberg D 2001 Phys. Rev. B 64 085305
[23] Lv X Q, Jin P and Wang Z G 2010 IEEE Photon. Technol. Lett. 22 1799
Related articles from Frontiers Journals
[1] Alireza Samavati, Zahra Samavati, A. F. Ismail, M. H. D. Othman, M. A. Rahman, A. K. Zulhairun. Efficient Visible Photoluminescence from Self-Assembled Ge QDs Embedded in Silica Matrix[J]. Chin. Phys. Lett., 2017, 34(6): 118102
[2] Yu-Long Chen, You Gao, Hong Chen, Hui Zhang, Miao He, Shu-Ti Li, Shu-Wen Zheng. Effect of In$_{x}$Ga$_{1-x}$As Interlayer on Surface Morphology and Optical Properties of GaSb/InGaAs Type-II Quantum Dots Grown on InP (100) Substrates[J]. Chin. Phys. Lett., 2016, 33(09): 118102
[3] Ting Wang, Hui-Yun Liu, Jian-Jun Zhang. Temperature-Dependent Photoluminescence Characteristics of InAs/GaAs Quantum Dots Directly Grown on Si Substrates[J]. Chin. Phys. Lett., 2016, 33(04): 118102
[4] ZHAO Shun-Cai, ZHANG Shuang-Ying, WU Qi-Xuan, JIA Jing. Left-Handedness with Three Zero-Absorption Windows Tuned by the Incoherent Pumping Field and Inter-Dot Tunnelings in a GaAs/AlGaAs Triple Quantum Dots System[J]. Chin. Phys. Lett., 2015, 32(5): 118102
[5] ZHANG Ji-Cheng, LIU Yu-Wei, HUANG Cheng-Long, ZHANG Qiang-Qiang, YI Yong, ZENG Yong, ZHU Xiao-Li, FAN Quan-Ping, QIAN Feng, WEI Lai, WANG Hong-Bin, WU Wei-Dong, CAO Lei-Feng. Diffraction Properties for 1000 Line/mm Free-Standing Quantum-Dot-Array Diffraction Grating Fabricated by Focused Ion Beam[J]. Chin. Phys. Lett., 2014, 31(12): 118102
[6] LUO Shuai, JI Hai-Ming, GAO Feng, YANG Xiao-Guang, LIANG Ping, ZHAO Ling-Juan, YANG Tao. InAs/InGaAsP/InP Quantum Dot Lasers Grown by Metalorganic Chemical Vapor Deposition[J]. Chin. Phys. Lett., 2013, 30(6): 118102
[7] TIAN Peng, HUANG Li-Rong**, YUAN Xiu-Hua, HUANG De-Xiu . Effects of an InGaAs Cap Layer on the Optical Properties of InAs Quantum Dot Molecules[J]. Chin. Phys. Lett., 2011, 28(6): 118102
[8] A. Rostami, **, H. Rasooli Saghai, H. Baghban, N. Sadoogi, Y. Seyfinejad. Capping-Barrier Layer Effect on Quantum Dot Optoelectronic Characteristics[J]. Chin. Phys. Lett., 2010, 27(10): 118102
[9] ZHAO Wei, YU Zhong-Yuan, LIU Yu-Min, FENG Hao, XU Zi-Huan. Research of Equilibrium Composition Map in Conic Quantum Dots[J]. Chin. Phys. Lett., 2010, 27(5): 118102
[10] JI Hai-Ming, YANG Tao, CAO Yu-Lian, XU Peng-Fei, GU Yong-Xian, MA Wen-Quan, WANG Zhan-Guo. High Characteristic Temperature 1.3μm InAs/GaAs Quantum-Dot Lasers Grown by Molecular Beam Epitaxy[J]. Chin. Phys. Lett., 2010, 27(2): 118102
[11] LIANG Zhi-Mei, JIN Can, JIN Peng, WU Ju, WANG Zhan-Guo. Temperature Insensitivity of Optical Properties of InAs/GaAs Quantum Dots due to a Pregrown InGaAs Quantum Well[J]. Chin. Phys. Lett., 2009, 26(1): 118102
[12] JIANG Zhong-Wei, WANG Wen-Xin, GAO Han-Chao, LI Hui, YANG Cheng-Liang, HE Tao, WU Dian-Zhong, CHEN Hong, ZHOU Jun-Ming. Effect of GaAs/GaSb Combination Strain-Reducing Layer on Self-Assembled InAs Quantum Dots[J]. Chin. Phys. Lett., 2008, 25(7): 118102
[13] LI Lin, LIU Guo-Jun, WANG Xiao-Hua, LI Mei, LI Zhan-Guo, WAN Chun-Ming. Low Density Self-Assembled InAs/GaAs Quantum Dots Grown by Metal Organic Chemical Vapour Deposition[J]. Chin. Phys. Lett., 2008, 25(2): 118102
[14] LU Yan-Wu, CAI Lin, LIANG Shuang. Strained and Piezoelectric Characteristics of Nitride Quantum Dots[J]. Chin. Phys. Lett., 2006, 23(4): 118102
[15] LOU Chao-Gang. Nonmean-Field Model for Ostwald Ripening of Two-Dimensional Islands[J]. Chin. Phys. Lett., 2004, 21(12): 118102
Viewed
Full text


Abstract