CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
|
|
|
|
Tensile Strength of Zr-Ti Binary Alloy |
ZHOU Yun-Kai, JING Ran, MA Ming-Zhen, LIU Ri-Ping** |
State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004
|
|
Cite this article: |
ZHOU Yun-Kai, JING Ran, MA Ming-Zhen et al 2013 Chin. Phys. Lett. 30 116201 |
|
|
Abstract Zr-Ti binary alloys are prepared using a nonconsumable tungsten electrode under Ti-gettered inert atmosphere (argon). Microstructures are observed mainly as α phase using x-ray diffraction. A tensile test is performed to investigate the tensile strength of a series of Zr-Ti binary alloys at room temperature. The findings indicate that increasing Ti concentration results in an initial increase (<50at% of Ti) and then a decrease in tensile strength. The Zr55Ti45 (at%) component exhibits the maximum tensile strength of 1216.68 MPa, which is much higher than that of pure Ti (increased by approximately 200%) or pure Zr (increased by approximately 100%). The potential mechanisms for the remarkable tensile strength are solid solution strengthening and grain refinement.
|
|
Received: 02 September 2013
Published: 30 November 2013
|
|
PACS: |
62.20.M-
|
(Structural failure of materials)
|
|
81.30.Bx
|
(Phase diagrams of metals, alloys, and oxides)
|
|
64.70.kd
|
(Metals and alloys)
|
|
|
|
|
[1] Kim Y S and Grybenas A 2009 Mater. Sci. Eng. A 520 147 [2] Trojanová Z, Luká? P, Král F, Král R, Lavrentev F F and Nikiforenko V N 1991 Mater. Sci. Eng. A 137 151 [3] Baykov V I, Perez R J, Korzhavyi P A, Sundman B and Johansson B 2006 Scr. Mater. 55 485 [4] Roy A K and Kaiparambil A V 2006 Mater. Sci. Eng. A 427 320 [5] Gloaguen D, Franois M, Guillen R and Royer 2002 Acta Mater. 50 871 [6] Tewari R, Srivastava D, Dey G K, Chakravarty J K and Banerjee S 2008 J. Nucl. Mater. 383 153 [7] Suyalatu, Nomura N, Oya Y, Tanaka Y, Kondo R, Doi H, Tsutsumi Y and Hanawa T 2010 Acta Biomater. 6 1033 [8] Hsu H C, Wu S C, Sung Y C and Ho W F 2009 J. Alloys Compd. 488 279 [9] Dey G K and Banerjee S 1985 Mater. Sci. Eng. 73 187 [10] Lee M H, Kim J H, Choi B K and Jeong Y H 2007 J. Alloys Compd. 428 99 [11] Dobromyslov A V and Kazantseva N V 1997 Scr. Mater. 37 615 [12] Liang S X, Yin L X, Ma M Z, Jing R, Yu P F and Liu R P 2013 Mater. Sci. Eng. A 561 13 [13] Sun B R, Zhan Z J, Liang B, Zhang R J and Wang W K 2012 Chin. Phys. B 21 056101 [14] Auffredic J P, Etchessahar E and Debuigne J 1982 J. Less-Common Met. 84 49 [15] Eylon D, Vassel A, Combres Y, Boyer R R, Bania P J and Schutz R W 1994 JOM 46 14 [16] Ivasishin O M, Markovsky P E, Matviychuk Yu V and Semiatin S L 2003 Metall. Mater. Trans. A 34 147 [17] Okazaki Y, Rao S, Ito Y and Tateishi T 1998 Biomaterials 19 1197 [18] Schutz R W and Watkins H B 1998 Mater. Sci. Eng. A 243 305 [19] Gorynin I V 1999 Mater. Sci. Eng. A 263 112 [20] Cheng W W, Chern Lin J H and Ju C P 2003 Mater. Lett. 57 2591 [21] Banerjee S and Krishnan R 1973 Metall. Trans. 4 1811 [22] Hatt B A and Williams G I 1959 Acta Metall. 7 682 [23] Leyens C and Peters M 2003 Titanium and Titanium Alloys (New York: Weinheim Wiley-VCH) p 3 [24] Liang S X, Ma M Z, Jing R, Zhou Y K, Jing Q and Liu R P 2012 Mater. Sci. Eng. A 539 42 [25] Jing R, Liang S X, Liu C Y, Ma M Z, Zhang X Y and Liu R P 2012 Mater. Sci. Eng. A 552 295 [26] Kobayash E, Matsumoto S, Doi H, Yoneyama T and Hamanaka H 1995 J. Biomed. Mater. Res. 29 943 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|