Chin. Phys. Lett.  2013, Vol. 30 Issue (11): 116501    DOI: 10.1088/0256-307X/30/11/116501
CONDENSED MATTER: STRUCTURE, MECHANICAL AND THERMAL PROPERTIES |
Path Integral Monte Carlo Study of X@C50 [X=H2, He, Ne, Ar]
PENG Chun1, ZHANG Hong1,2**, CHENG Xin-Lu2
1College of Physical Science and Technology, Sichuan University, Chengdu 610065
2Institution of Atomic and Molecular Physics, Sichuan University, Chengdu 610065
Cite this article:   
PENG Chun, ZHANG Hong, CHENG Xin-Lu 2013 Chin. Phys. Lett. 30 116501
Download: PDF(741KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Path integral Monte Carlo (PIMC) method is employed to study the thermal properties of the X@C50 [X=H2, He, Ne, Ar] system at temperatures from 5 K to 300 K. The interaction energies and probability distribution functions of one noble gas atom or H2 inside D5h-symmetry C50 are obtained. A rough sphere model is used in calculating interaction energies, as a comparison. This model gives much lower interaction energy than PIMC calculations on all X@C50, except He@C50. The PIMC method and the sphere model get nearly the same values of interaction energies on He@C50. The spatial distributions are enlarged by the increase in temperature, while the interaction energies change slowly in a wide range of temperature. Temperature is not the major reason for the stability of the system. It is impossible to trap an X atom into C50, except H2 because only the H2@C50 has positive interaction energies from the PIMC calculations.
Received: 24 March 2013      Published: 30 November 2013
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  68.60.Dv (Thermal stability; thermal effects)  
  05.10.Ln (Monte Carlo methods)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/11/116501       OR      https://cpl.iphy.ac.cn/Y2013/V30/I11/116501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
PENG Chun
ZHANG Hong
CHENG Xin-Lu
[1] Sauders M, Jimenez-Vazques H A, Cross R J, Mroczkowski S, Gross M L, Giblin D E and Poreda R J 1994 J. Am. Chem. Soc. 116 2193
[2] Xie S Y, Gao F; Lu X, Huang R B, Wang C R, Zhang X, Liu M L, Deng S L and Zheng L S 2004 Science 304 699
[3] Ge M, Nagel U, Huvonen D, Room T, Mamonem S, Levitt M H, Carravetta M, Murata Y, Komatsu K, Chen J Y C and Turro N J 2011 J. Chem. Phys. 134 054507
[4] Mamonem S, Chen J Y C, Bhattacharyya R, Levitt M H, Lawler R G, Horsewill A J, Room T, Bacic Z and Turro N J 2011 Chem. Rev. 255 938
[5] Sebastianelli F, Xu M, Bacic Z, Lawler R and Turro N J 2010 J. Am. Chem. Soc. 132 9826
[6] Kruse H and Grimme S 2009 J. Phys. Chem. C 113 17006
[7] Korona T, Hesselmann A and Dodziuk H 2009 J. Chem. Theory Comput. 5 1585
[8] Ceperley D M 1995 Rev. Mod. Phys. 67 279
[9] Garberoglio G, DeKlavon M M and Johnson J K 2006 J. Phys. Chem. B 110 1733
[10] Garberoglio G and Johnson J K 2010 ACS Nano 4 1703
[11] Gu C and Gao G H 2002 Phys. Chem. Chem. Phys. 4 4700
[12] Gordillo M C and Ceperley D M 2002 Phys. Rev. B 65 036703
[13] Slanina Z, Pulay P and Nagase S J 2006 J. Chem. Theory Comput. 2 782
[14] Cole M W and Klein J R 1983 Surf. Sci. 124 547
[15] Stan G and Cole M W 1998 Surf. Sci. 395 280
[16] Calbi M M, Gatica S M, Bojan M J and Cole M W 2001 J. Chem. Phys. 115 9975
[17] Buch V 1994 J. Chem. Phys. 100 7610
[18] Sebastianelli F, Xu M and Ba?i? Z 2008 J. Chem. Phys. 129 244706
[19] Hernández E S, Cole M W and Boninsegni M 2003 Phys. Rev. B 68 125418
[20] Xu M, Sebastianelli F, Gibbons B R, Ba?i? Z, Lawler R and Turro N J 2009 J. Chem. Phys. 130 224306
[21] Pitonak M, Neogrady P, Cerny J, Grimme S and Hobza P 2009 ChemPhysChem 10 282
Related articles from Frontiers Journals
[1] Gui-ping Zhu , Chang-wei Zhao , Xi-wen Wang , and Jian Wang. Tuning Thermal Conductivity in Si Nanowires with Patterned Structures[J]. Chin. Phys. Lett., 2021, 38(2): 116501
[2] Vali Dalouji, Dariush Mehrparvar, Shahram Solaymani, Sahar Rezaee. Effect of Nickel Distributions Embedded in Amorphous Carbon Films on Transport Properties[J]. Chin. Phys. Lett., 2018, 35(2): 116501
[3] Deyan Sun, Cheng Shang, Zhipan Liu, Xingao Gong. Intrinsic Features of an Ideal Glass[J]. Chin. Phys. Lett., 2017, 34(2): 116501
[4] LU Xing, ZHONG Wei-Rong. Low Thermal Conductivity of Paperclip-Shaped Graphene Superlattice Nanoribbons[J]. Chin. Phys. Lett., 2015, 32(09): 116501
[5] WEI Liang, XU Zhi-Cheng, ZHENG Dong-Qin, ZHANG Wei, ZHONG Wei-Rong. Heat Transport in Double-Bond Linear Chains of Fullerenes[J]. Chin. Phys. Lett., 2015, 32(07): 116501
[6] CHEN Xiao-Ming, HUO Kai-Tuo, LIU Peng. In Situ X-Ray Diffraction Study on Surface Melting of Bi Nanoparticles Embedded in a SiO2 Matrix[J]. Chin. Phys. Lett., 2014, 31(1): 116501
[7] PAN Rui-Qin, XU Zi-Jian, DAI Cui-Xia. Thermal Conductivity of the Partly Covered Inner Tube in a Double-Walled Carbon Nanotube with Varied Coverage Ratios[J]. Chin. Phys. Lett., 2014, 31(1): 116501
[8] LÜ, Yong-Jun**. Enhanced Surface Premelting of Ni90Si10 Nanoparticles[J]. Chin. Phys. Lett., 2012, 29(4): 116501
[9] ZHOU Guo-Rui, FENG Guo-Ying, ZHANG Yi, MA Zi, WANG Jian-Jun. A Temperature Sensor Based on a Symmetrical Metal-Cladding Optical Waveguide[J]. Chin. Phys. Lett., 2012, 29(2): 116501
[10] WANG Sheng-Jie, ZHANG Chun-Lai, WANG Zhi-Guo. Melting of Single-Walled Silicon Carbide Nanotubes: Density Functional Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2010, 27(10): 116501
[11] HU Guo-Jie, CAO Bing-Yang, LI Yuan-Wei. Thermal Conduction in a Single Polyethylene Chain Using Molecular Dynamics Simulations[J]. Chin. Phys. Lett., 2014, 31(08): 116501
Viewed
Full text


Abstract