Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 108901    DOI: 10.1088/0256-307X/30/10/108901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Structural Robustness of Weighted Complex Networks Based on Natural Connectivity
ZHANG Xiao-Ke1, WU Jun1**, TAN Yue-Jin1, DENG Hong-Zhong1, LI Yong 2
1College of Information Systems and Management, National University of Defense Technology, Changsha 410073
2Department of Business Administration, Changsha University, Changsha 410073
Cite this article:   
ZHANG Xiao-Ke, WU Jun, TAN Yue-Jin et al  2013 Chin. Phys. Lett. 30 108901
Download: PDF(428KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Natural connectivity has been recently proposed to efficiently characterize the structural robustness of complex networks. The natural connectivity, interpreted as the Helmholtz free energy of a network, can be derived from the graph spectrum. We extend the concept of natural connectivity to weighted complex networks, in which the weight represents the number of multiple edges. We prove that the weighted natural connectivity changes monotonically when the weights are increased or decreased. We investigate the influence of weight on the network robustness within scenarios of weight changing and show that the weighted natural connectivity allows a precise quantitative analysis of the structural robustness for weighted complex networks.
Received: 13 May 2013      Published: 21 November 2013
PACS:  89.75.Hc (Networks and genealogical trees)  
  89.75.Fb (Structures and organization in complex systems)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/108901       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/108901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xiao-Ke
WU Jun
TAN Yue-Jin
DENG Hong-Zhong
LI Yong
[1] Albert R, Jeong H and Barabási A L 2000 Nature 406 378
[2] Chi L P, Yang C B and Cai X 2006 Chin. Phys. Lett. 23 263
[3] Hu B, Li F and Zhou H S 2009 Chin. Phys. Lett. 26 128901
[4] Liu J G, Wang Z T and Dang Y Z 2006 Mod. Phys. Lett. B 20 815
[5] Wu J, Deng H Z, Tan Y J and Zhu D Z 2007 J. Phys. A 40 2665
[6] Wu J, Deng H Z, Tan Y J and Li Y 2007 Chin. Phys. Lett. 24 2138
[7] Wu J, Deng H Z, Tan Y J, Li Y and Zhu D Z 2007 Mod. Phys. Lett. B 21 1007
[8] Wang J W and Rong L L 2008 Chin. Phys. Lett. 25 3826
[9] Li Y, Wu J and Zou A Q 2010 Chin. Phys. Lett. 27 068901
[10] Li J, Wu J, Li Y, Deng H Z and Tan Y J 2011 Chin. Phys. Lett. 28 058904
[11] Li J, Wu J, Li Y, Deng H Z and Tan Y J 2011 Chin. Phys. Lett. 28 068902
[12] Bauer G and Bolch G 1990 Comput. Commun. 13 494
[13] Harary F 1983 Networks 13 347
[14] Esfahanian A H and Hakimi S L 1988 Inf. Process. Lett. 27 195
[15] Krishnamoorthy M S and Krishnamurthy B 1987 Comput. Math. Appl. 13 577
[16] Chvatal V 1973 Discrete Math. 5 215
[17] Jung H A 1978 J. Comb. Theor. Ser. B 24 125
[18] Alon N 1986 Combinatorica 6 83
[19] Mohar B 1989 J. Comb. Theor. Ser. B 47 274
[20] Fiedler M 1973 Czech. Math. J. 23 298
[21] Wu J, Barahona M, Tan Y J and Deng H Z 2010 Chin. Phys. Lett. 27 078902
[22] Wu J, Barahona M, Tan Y J and Deng H Z 2011 IEEE Trans. Syst. Man Cybern. Part A 41 1244
[23] Wu J, Barahona M, Tan Y J and Deng H Z 2011 Int. J. Syst. Sci. 42 1085
[24] Wu J, Barahona M, Tan Y J, Deng H Z 2012 Chaos 22 043101
[25] Estrada E, Hatano N and Benzi M 2012 Phys. Rep. 514 89
[26] Shang Y L 2011 Chin. Phys. Lett. 28 068903
[27] Shang Y L 2011 J. Phys. A: Math. Theor. 44 075003
[28] Randles M, Lamb D, Odat E and Taleb-Bendiab A 2011 J. Comput. Syst. Sci. 77 293
[29] Shang Y 2012 Indian J. Phys. 86 485
[30] Park K, Lai Y C and Ye N 2004 Phys. Rev. E 70 026109
[31] Barrat A, Barthélemy M and Vespignani A 2008 Dynamical Process on Complex Networks (Cambridge: Cambridge University Press) p 1
[32] Yazdani A and Jeffrey P 2011 Chaos 21 016111
[33] Barabasi A L and Albert R 1999 Science 286 509
Related articles from Frontiers Journals
[1] Qing-Xian Wang, Jun-Jie Zhang, Xiao-Yu Shi, Ming-Sheng Shang. User Heterogeneity and Individualized Recommender[J]. Chin. Phys. Lett., 2017, 34(6): 108901
[2] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 108901
[3] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 108901
[4] Liu-Hua Zhu. Effects of Reduced Frequency on Network Configuration and Synchronization Transition[J]. Chin. Phys. Lett., 2016, 33(05): 108901
[5] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 108901
[6] Wei Zheng, Qian Pan, Chen Sun, Yu-Fan Deng, Xiao-Kang Zhao, Zhao Kang. Fractal Analysis of Mobile Social Networks[J]. Chin. Phys. Lett., 2016, 33(03): 108901
[7] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 108901
[8] HU Dong, SUN Xian, LI Ping, CHEN Yan, ZHANG Jie. Factors That Affect the Centrality Controllability of Scale-Free Networks[J]. Chin. Phys. Lett., 2015, 32(12): 108901
[9] HUANG Feng, CHEN Han-Shuang, SHEN Chuan-Sheng. Phase Transitions of Majority-Vote Model on Modular Networks[J]. Chin. Phys. Lett., 2015, 32(11): 108901
[10] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 108901
[11] LI Ling, GUAN Ji-Hong, ZHOU Shui-Geng. Efficiency-Controllable Random Walks on a Class of Recursive Scale-Free Trees with a Deep Trap[J]. Chin. Phys. Lett., 2015, 32(03): 108901
[12] JING Xing-Li, LING Xiang, HU Mao-Bin, SHI Qing. Random Walks on Deterministic Weighted Scale-Free Small-World Networks with a Perfect Trap[J]. Chin. Phys. Lett., 2014, 31(08): 108901
[13] HU Jian-Quan, YANG Hong-Chun, YANG Yu-Ming, FU Chuan-Ji, YANG Chun, SHI Xiao-Hong, JIA Xiao. Two Typical Discontinuous Transitions Observed in a Generalized Achlioptas Percolation Process[J]. Chin. Phys. Lett., 2014, 31(07): 108901
[14] LING Xiang. Effect of Mixing Assortativity on Extreme Events in Complex Networks[J]. Chin. Phys. Lett., 2014, 31(06): 108901
[15] ZHANG Yong, JU Xian-Meng, ZHANG Li-Jie, XU Xin-Jian. Statistics of Leaders in Index-Driven Networks[J]. Chin. Phys. Lett., 2013, 30(5): 108901
Viewed
Full text


Abstract