CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Structural Robustness of Weighted Complex Networks Based on Natural Connectivity |
ZHANG Xiao-Ke1, WU Jun1**, TAN Yue-Jin1, DENG Hong-Zhong1, LI Yong 2 |
1College of Information Systems and Management, National University of Defense Technology, Changsha 410073 2Department of Business Administration, Changsha University, Changsha 410073
|
|
Cite this article: |
ZHANG Xiao-Ke, WU Jun, TAN Yue-Jin et al 2013 Chin. Phys. Lett. 30 108901 |
|
|
Abstract Natural connectivity has been recently proposed to efficiently characterize the structural robustness of complex networks. The natural connectivity, interpreted as the Helmholtz free energy of a network, can be derived from the graph spectrum. We extend the concept of natural connectivity to weighted complex networks, in which the weight represents the number of multiple edges. We prove that the weighted natural connectivity changes monotonically when the weights are increased or decreased. We investigate the influence of weight on the network robustness within scenarios of weight changing and show that the weighted natural connectivity allows a precise quantitative analysis of the structural robustness for weighted complex networks.
|
|
Received: 13 May 2013
Published: 21 November 2013
|
|
PACS: |
89.75.Hc
|
(Networks and genealogical trees)
|
|
89.75.Fb
|
(Structures and organization in complex systems)
|
|
|
|
|
[1] Albert R, Jeong H and Barabási A L 2000 Nature 406 378 [2] Chi L P, Yang C B and Cai X 2006 Chin. Phys. Lett. 23 263 [3] Hu B, Li F and Zhou H S 2009 Chin. Phys. Lett. 26 128901 [4] Liu J G, Wang Z T and Dang Y Z 2006 Mod. Phys. Lett. B 20 815 [5] Wu J, Deng H Z, Tan Y J and Zhu D Z 2007 J. Phys. A 40 2665 [6] Wu J, Deng H Z, Tan Y J and Li Y 2007 Chin. Phys. Lett. 24 2138 [7] Wu J, Deng H Z, Tan Y J, Li Y and Zhu D Z 2007 Mod. Phys. Lett. B 21 1007 [8] Wang J W and Rong L L 2008 Chin. Phys. Lett. 25 3826 [9] Li Y, Wu J and Zou A Q 2010 Chin. Phys. Lett. 27 068901 [10] Li J, Wu J, Li Y, Deng H Z and Tan Y J 2011 Chin. Phys. Lett. 28 058904 [11] Li J, Wu J, Li Y, Deng H Z and Tan Y J 2011 Chin. Phys. Lett. 28 068902 [12] Bauer G and Bolch G 1990 Comput. Commun. 13 494 [13] Harary F 1983 Networks 13 347 [14] Esfahanian A H and Hakimi S L 1988 Inf. Process. Lett. 27 195 [15] Krishnamoorthy M S and Krishnamurthy B 1987 Comput. Math. Appl. 13 577 [16] Chvatal V 1973 Discrete Math. 5 215 [17] Jung H A 1978 J. Comb. Theor. Ser. B 24 125 [18] Alon N 1986 Combinatorica 6 83 [19] Mohar B 1989 J. Comb. Theor. Ser. B 47 274 [20] Fiedler M 1973 Czech. Math. J. 23 298 [21] Wu J, Barahona M, Tan Y J and Deng H Z 2010 Chin. Phys. Lett. 27 078902 [22] Wu J, Barahona M, Tan Y J and Deng H Z 2011 IEEE Trans. Syst. Man Cybern. Part A 41 1244 [23] Wu J, Barahona M, Tan Y J and Deng H Z 2011 Int. J. Syst. Sci. 42 1085 [24] Wu J, Barahona M, Tan Y J, Deng H Z 2012 Chaos 22 043101 [25] Estrada E, Hatano N and Benzi M 2012 Phys. Rep. 514 89 [26] Shang Y L 2011 Chin. Phys. Lett. 28 068903 [27] Shang Y L 2011 J. Phys. A: Math. Theor. 44 075003 [28] Randles M, Lamb D, Odat E and Taleb-Bendiab A 2011 J. Comput. Syst. Sci. 77 293 [29] Shang Y 2012 Indian J. Phys. 86 485 [30] Park K, Lai Y C and Ye N 2004 Phys. Rev. E 70 026109 [31] Barrat A, Barthélemy M and Vespignani A 2008 Dynamical Process on Complex Networks (Cambridge: Cambridge University Press) p 1 [32] Yazdani A and Jeffrey P 2011 Chaos 21 016111 [33] Barabasi A L and Albert R 1999 Science 286 509 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|