Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 108902    DOI: 10.1088/0256-307X/30/10/108902
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Cooperation of a Dissatisfied Adaptive Prisoner's Dilemma in Spatial Structures
ZHANG Wen1, LI Yao-Sheng2, DU Peng2, XU Chen2*
1Department of Mechanical and Electrical Engineering, Suzhou Institute of Industrial Technology, Suzhou 215104
2School of Physical Science and Technology, Soochow University, Suzhou 215006
Cite this article:   
ZHANG Wen, LI Yao-Sheng, DU Peng et al  2013 Chin. Phys. Lett. 30 108902
Download: PDF(457KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the cooperative behavior of a dissatisfied adaptive prisoner's dilemma via a pair updating rule. We compare two kinds of relationship among the competing agents, one is the well-mixed population and the other is the two-dimensional square lattice. It is found that the cooperation emerges in both the cases and the frequency of cooperation is enhanced in the square lattice. Though it is impossible for the cooperators to have a higher average payoff than that of the defectors in the well-mixed case, the cooperators in the spatial square lattice could have higher average payoffs in certain regions of the game parameters. We theoretically analyze the well-mixed case exactly and the square lattice by pair approximation. The theoretic results are in agreement with the simulation data.
Received: 11 July 2013      Published: 21 November 2013
PACS:  89.75.-k (Complex systems)  
  87.23.Kg (Dynamics of evolution)  
  02.50.Le (Decision theory and game theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/108902       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/108902
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Wen
LI Yao-Sheng
DU Peng
XU Chen
[1] Sigmund K 1993 Games of Life (Oxford: Oxford University Press)
[2] Axelrod R and Hamilton W D 1981 Science 211 1390
[3] May R M 1981 Nature 292 291
[4] Nowak M 1990 Theor. Popul. Biol. 38 93
[5] Santos F C and Pacheco J M 2005 Phys. Rev. Lett. 95 098104
[6] Perc M and Szolnoki A 2008 Phys. Rev. E 77 011904
[7] Milinski M 1987 Nature 325 433
[8] Nakamaru M, Matsuda H and Iwasa Y 1997 J. Theor. Biol. 184 65
[9] Hutson V C L and Vickers G T 1995 Philos. Trans. R. Soc. B 348 393
[10] Grim P 1996 Biosystems 37 3
[11] Nowak M A and Sigmund K 1992 Nature 355 250
[12] Roca C P, Cuesta J A and S ánchez A 2006 Phys. Rev. Lett. 97 158701
[13] Nowak M A and May R M 1992 Nature 359 826
[14] Santos F C, Pacheco J M and Lenaerts T 2006 Proc. Natl. Acad. Sci. USA 103 3490
[15] Zhang W, Xu C and Hui P M 2013 Eur. Phys. J. B 86 196
[16] Gr?ser O, Xu C and Hui P M 2009 Europhys. Lett. 87 38003
[17] Gr?ser O, Xu C and Hui P M 2011 New J. Phys. 13 083015
Related articles from Frontiers Journals
[1] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks[J]. Chin. Phys. Lett., 2020, 37(6): 108902
[2] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks *[J]. Chin. Phys. Lett., 0, (): 108902
[3] Ze-Jun Xie, Lu-Man Zhang, Sheng-Feng Deng, Wei Li. A Dynamic Evolution Model of Airline Networks[J]. Chin. Phys. Lett., 2017, 34(5): 108902
[4] Di Yuan, Dong-Qiu Zhao, Yi Xiao, Ying-Xin Zhang. Travelling Wave in the Generalized Kuramoto Model with Inertia[J]. Chin. Phys. Lett., 2016, 33(05): 108902
[5] MENG Qing-Kuan, FENG Dong-Tai, GAO Xu-Tuan. Monte Carlo Renormalization Group Method to Study the First-Order Phase Transition in the Complex Ferromagnet[J]. Chin. Phys. Lett., 2015, 32(12): 108902
[6] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 108902
[7] FENG Yue-E, LI Hai-Hong, YANG Jun-Zhong. Dynamics of the Kuramoto Model with Bimodal Frequency Distribution on Complex Networks[J]. Chin. Phys. Lett., 2014, 31(08): 108902
[8] SUN Mei, LI Dan-Dan, HAN Dun, JIA Qiang. Synchronization of Colored Networks via Discrete Control[J]. Chin. Phys. Lett., 2013, 30(9): 108902
[9] M. Mossa Al-sawalha. Adaptive Synchronization and Anti-Synchronization of a Chaotic Lorenz–Stenflo System with Fully Unknown Parameters[J]. Chin. Phys. Lett., 2013, 30(7): 108902
[10] ZHANG Yong, JU Xian-Meng, ZHANG Li-Jie, XU Xin-Jian. Statistics of Leaders in Index-Driven Networks[J]. Chin. Phys. Lett., 2013, 30(5): 108902
[11] ZANG Hong-Yan, MIN Le-Quan, ZHAO Geng, CHEN Guan-Rong. Generalized Chaos Synchronization of Bidirectional Arrays of Discrete Systems[J]. Chin. Phys. Lett., 2013, 30(4): 108902
[12] Wafaa Jawaada, M. S. M. Noorani, M. Mossa Al-sawalha. Anti-Synchronization of Chaotic Systems via Adaptive Sliding Mode Control[J]. Chin. Phys. Lett., 2012, 29(12): 108902
[13] HOU Lv-Lin, LAO Song-Yang, LIU Gang, BAI Liang. Controllability and Directionality in Complex Networks[J]. Chin. Phys. Lett., 2012, 29(10): 108902
[14] LIU Xu,XIE Zheng,YI Dong-Yun**. Community Detection by Neighborhood Similarity[J]. Chin. Phys. Lett., 2012, 29(4): 108902
[15] DUAN Wen-Qi. Formation Mechanism of the Accumulative Magnification Effect in a Financial Time Series[J]. Chin. Phys. Lett., 2012, 29(3): 108902
Viewed
Full text


Abstract