GENERAL |
|
|
|
|
Enhanced Second-Order Resonance Actuation and Frequency Response Modulation of Microcantilever by Dual Coplanar Counter Electrodes |
FENG Zhao-Bin, LIU Duo** |
State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100
|
|
Cite this article: |
FENG Zhao-Bin, LIU Duo 2013 Chin. Phys. Lett. 30 100701 |
|
|
Abstract We achieve enhanced actuation of the 2nd-order resonance of a microcantilever in a capacitive microcantilever structure featured by a dual coplanar counter electrodes configuration. A torque about the static point of the 2nd eigenmode is generated in this configuration and therefore enables effective actuation of the 2nd-order resonance. It is further confirmed that the torque has the effect of suppressing the 1st-order resonance. As a result, the frequency response curve of the microcantilever beam can be modulated. Our results suggest that electric actuation of any higher-order resonances of the microcantilever can be realized through a rational design of counter electrodes.
|
|
Received: 07 May 2013
Published: 21 November 2013
|
|
PACS: |
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
07.10.Pz
|
(Instruments for strain, force, and torque)
|
|
46.40.Ff
|
(Resonance, damping, and dynamic stability)
|
|
|
|
|
[1] Omidi M, Malakoutian M A, Choolaei M, Oroojalian F, Haghiralsadat F and Yazdian F 2013 Chin. Phys. Lett. 30 068701 [2] Keskar G, Elliott B, Gaillard J, Skove M J and Rao A M 2008 Sens. Actuators A 147 203 [3] Davis Z J and Boisen A 2005 Appl. Phys. Lett. 87 013102 [4] Zhao A D, Zheng Y J and Yu X M 2012 Chin. Phys. Lett. 29 058502 [5] Zhang J Q, Feng X Q, Huang G Y and Yu S W 2012 Chin. Phys. Lett. 29 056801 [6] Cao L X, Zhang F X, Zhu Y F and Yang J L 2010 Chin. Phys. Lett. 27 108501 [7] Feng Z, Liu D, Zuo Z, Yu Q, Wang R and Xu X 2012 Appl. Phys. Lett. 101 061901 [8] Gaillard J, Skove M J, Ciocan R and Rao A M 2006 Rev. Sci. Instrum. 77 073907 [9] Cao M, Ye L, Zhou L, Su Z and Bai R 2011 Mech. Syst. Signal Process. 25 630 [10] Sugimoto Y, Innami S, Abe M, Custance ó and Morita S 2007 Appl. Phys. Lett. 91 093120 [11] Rodríguez T R and García R 2004 Appl. Phys. Lett. 84 449 [12] Chawla G and Solares S D 2011 Appl. Phys. Lett. 99 074103 [13] Stark R W, Drobek T and Heckl W M 1999 Appl. Phys. Lett. 74 3296 [14] Weaver W, Timoshenko S P and Young D H 1990 Vibration Problems in Engineering (New York: John Wiley & Sons, Inc.) [15] Yum K, Wang Z, Suryavanshi A P and Yu M F 2004 J. Appl. Phys. 96 3933 [16] Koley G, Spencer M G and Bhangale H R 2001 Appl. Phys. Lett. 79 545 [17] Jeon S, Braiman Y and Thundat T 2004 Rev. Sci. Instrum. 75 4841 [18] Hoffmann á Jungk T and Soergel E 2007 Rev. Sci. Instrum. 78 016101 [19] Lee D, Kim S, Jung N, Thundat T and Jeon S 2009 J. Appl. Phys. 106 024310 [20] Eysden C A V and Sader J E 2007 J. Appl. Phys. 101 044908 [21] Venstra W J, Westra H J R and van der Zant H S J 2010 Appl. Phys. Lett. 97 193107 [22] Paolino P, Tiribilli B and Bellon L 2009 J. Appl. Phys. 106 094313 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|