Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 100301    DOI: 10.1088/0256-307X/30/10/100301
GENERAL |
Distance Ranging Based on Quantum Entanglement
XIAO Jun-Jun1, FANG Chen3, HAN Xiao-Chun1, ZHAO Jian-Kang2, ZENG Gui-Hua1**
1State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240
2Shanghai Key Laboratory on Navigation and Location-based Service, Shanghai Jiao Tong University, Shanghai 200240
3Department of Electronics and Information, Northwestern Polytechnical University, Xi'an 710129
Cite this article:   
XIAO Jun-Jun, FANG Chen, HAN Xiao-Chun et al  2013 Chin. Phys. Lett. 30 100301
Download: PDF(847KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In the quantum metrology, applications of quantum techniques based on entanglement bring in some better performances than conventional approaches. We experimentally investigate an application of entanglement in accurate ranging based on the second-order coherence in the time domain. By a fitting algorithm in the data processing, the optimization results show a precision of ±200 μm at a distance of 1043.3 m. In addition, the influence of jamming noise on the ranging scheme is studied. With some different fitting parameters, the result shows that the proposed scheme has a powerful anti-jamming capability for white noise.
Received: 29 May 2013      Published: 21 November 2013
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.25.Kb (Coherence)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/100301       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/100301
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIAO Jun-Jun
FANG Chen
HAN Xiao-Chun
ZHAO Jian-Kang
ZENG Gui-Hua
[1] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[2] Bennett C et al1993 Phys. Rev. Lett. 70 1895
[3] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 68 557
[4] Ekert A K 1991 Phys. Rev. Lett. 67 661
Ekert A K et al 1992 Phys. Rev. Lett. 69 1293
[5] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[6] Heo J, Hong C H, Lim J I and Yang H J 2013 Chin. Phys. Lett. 30 040301
[7] Giovannetti V, Lloyd S and Maccone L 2001 Nature 412 417
[8] McCarthy A, Collins R J, Krichel N J, Fernandez V, Wallance A M and Buller G S 2009 Appl. Opt. 48 6241
[9] Pellegrin S, Buller G S, Smith J M, Wallace A M and Cova S 2000 Meas. Sci. Technol. 11 712
[10] Coddington I, Swann W C, Nenadovic L and Newbury N R 2009 Nat. Photon. 3 351
[11] Valencia A, Scarcelli G and Shih Y H 2004 Appl. Phys. Lett. 85 2655
[12] Hong C K and Mandel L 1985 Phys. Rev. A 31 2409
[13] Hong C K, Ou Z Y and Mandel L 1987 Phys. Rev. Lett. 59 2044
[14] Zhu J, Chen X, Huang P and Zeng G 2012 Appl. Opt. 51 4885
[15] Rubin M H, Klyshko D N, Shih Y H and Sergienko A V 1994 Phys. Rev. A 50 5122
[16] Klyshko D N 1988 Photons and Nonlinear Optics (New York: Gordon and Breach)
[17] Valencia A, Chekhova M V, Trifonov A and Shih Y H 2002 Phys. Rev. Lett. 88 183601
Related articles from Frontiers Journals
[1] Qiuxin Zhang, Chenhao Zhu, Yuxin Wang, Liangyu Ding, Tingting Shi, Xiang Zhang, Shuaining Zhang, and Wei Zhang. Experimental Test of Contextuality Based on State Discrimination with a Single Qubit[J]. Chin. Phys. Lett., 2022, 39(8): 100301
[2] Jie Xie, Li Zhou, Aonan Zhang, Huichao Xu, Man-Hong Yung, Ping Xu, Nengkun Yu, and Lijian Zhang. Entirety of Quantum Uncertainty and Its Experimental Verification[J]. Chin. Phys. Lett., 2021, 38(7): 100301
[3] A-Long Zhou , Dong Wang, Xiao-Gang Fan , Fei Ming , and Liu Ye. Mutual Restriction between Concurrence and Intrinsic Concurrence for Arbitrary Two-Qubit States[J]. Chin. Phys. Lett., 2020, 37(11): 100301
[4] Wei-Min Shang, Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Quantum Deletion of Copies of Two Non-orthogonal Quantum States via Weak Measurement[J]. Chin. Phys. Lett., 2020, 37(5): 100301
[5] Si-Yuan Liu, Feng-Lin Wu, Yao-Zhong Zhang, Heng Fan. Strong Superadditive Deficit of Coherence and Quantum Correlations Distribution[J]. Chin. Phys. Lett., 2019, 36(8): 100301
[6] Jie Zhou, Hui-Xian Meng, Jing-Ling Chen. Detecting Quantumness in the $n$-cycle Exclusivity Graphs[J]. Chin. Phys. Lett., 2019, 36(8): 100301
[7] Junzhao Liu, Yanjun Liu, Jing Lu. Complementarity via Minimum Error Measurement in a Two-Path Interferometer[J]. Chin. Phys. Lett., 2019, 36(5): 100301
[8] Yang Yang, An-Min Wang, Lian-Zhen Cao, Jia-Qiang Zhao, Huai-Xin Lu. Frozen Quantum Coherence for a Central Two-Qubit System in a Spin-Chain Environment[J]. Chin. Phys. Lett., 2018, 35(8): 100301
[9] W.-B. Wang, X.-Y. Chang, F. Wang, P.-Y. Hou, Y.-Y. Huang, W.-G. Zhang, X.-L. Ouyang, X.-Z. Huang, Z.-Y. Zhang, H.-Y. Wang, L. He, L.-M. Duan. Realization of Quantum Maxwell's Demon with Solid-State Spins[J]. Chin. Phys. Lett., 2018, 35(4): 100301
[10] Muhammad Adeel Ajaib. Hydrogen Atom and Equivalent Form of the Lévy-Leblond Equation[J]. Chin. Phys. Lett., 2017, 34(5): 100301
[11] A. Ben-Israel, L. Knips, J. Dziewior, J. Meinecke, A. Danan, H. Weinfurter, L. Vaidman. An Improved Experiment to Determine the 'Past of a Particle' in the Nested Mach–Zehnder Interferometer[J]. Chin. Phys. Lett., 2017, 34(2): 100301
[12] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 100301
[13] Zhi-Yuan Li. Time-Modulated Hamiltonian for Interpreting Delayed-Choice Experiments via Mach–Zehnder Interferometers[J]. Chin. Phys. Lett., 2016, 33(08): 100301
[14] Faizi E., Eftekhari H.. Quantum Correlations in Ising-XYZ Diamond Chain Structure under an External Magnetic Field[J]. Chin. Phys. Lett., 2015, 32(10): 100301
[15] SUN Jun, SUN Yong-Nan, LI Chuan-Feng, GUO Guang-Can. On Delay of the Delayed Choice Experiment[J]. Chin. Phys. Lett., 2015, 32(09): 100301
Viewed
Full text


Abstract