Chin. Phys. Lett.  2013, Vol. 30 Issue (10): 100202    DOI: 10.1088/0256-307X/30/10/100202
GENERAL |
A Method to Construct the Nonlocal Symmetries of Nonlinear Evolution Equations
XIN Xiang-Peng, CHEN Yong**
Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062
Cite this article:   
XIN Xiang-Peng, CHEN Yong 2013 Chin. Phys. Lett. 30 100202
Download: PDF(432KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract A method is proposed to seek the nonlocal symmetries of nonlinear evolution equations. The validity and advantages of the proposed method are illustrated by the applications to the Boussinesq equation, the coupled Korteweg-de Vries system, the Kadomtsev–Petviashvili equation, the Ablowitz–Kaup–Newell–Segur equation and the potential Korteweg-de Vries equation. The facts show that this method can obtain not only the nonlocal symmetries but also the general Lie point symmetries of the given equations.
Received: 06 May 2013      Published: 21 November 2013
PACS:  02.30.Jr (Partial differential equations)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
  02.20.-a (Group theory)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/10/100202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I10/100202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
XIN Xiang-Peng
CHEN Yong
[1] Lie S 1881 Arch. Math. 6 328
[2] Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic)
[3] Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics (Boston, MA: Reidel)
[4] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (New York: Springer-Verlag)
[5] Goyal N and Gupta R K 2012 Phys. Scr. 85 015004
[6] Nucci M C and Clarkson P A 1992 Phys. Lett. A 164 49
[7] Lakhveer K and Gupta R K 2013 Phys. Scr. 87 035003
[8] Chen Y and Dong Z Z 2009 Nonlinear Anal. 71 e810
[9] Johnpillai A G, Kara A H and Biswas A 2013 Appl. Math. Lett. 26 376
[10] Olver P J 1986 Applications of Lie Groups to Differential Equations (Berlin: Springer)
[11] Bluman G W, Cheviakov A F and Anco S C 2010 Applications of Symmetry Methods to Partial Differential Equations (New York: Springer)
[12] Bluman G W and Cheviakov A F 2007 J. Math. Anal. Appl. 333 93
[13] Galas F 1992 J. Phys. A: Math. Gen. 25 L981
[14] Lou S Y and Hu X B 1993 Chin. Phys. Lett. 10 577
[15] Akhatov I Sh and Gazizov R K 1991 J. Sov. Math. 55 1401
[16] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A: Math. Theor. 45 155209
[17] Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[18] Bogdanov L V and Zakharov V E 2002 Physica D 165 137
[19] Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
[20] Wazwaz A M 2007 Appl. Math. Comput. 76 674
[21] Hu X B and Lou S Y 2000 Proc. Inst. Math. NAS Ukraine 30 120
[22] Liu P, Jia M and Lou S Y 2007 Phys. Scr. 351 403
[23] Fan E G and Zhang H Q 1998 Phys. Lett. A 246 403
[24] Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
[25] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[26] Zhou R G snd Ma W X 2000 Appl. Math. Lett. 13 131
[27] Cao C W 1991 Acta Math. Sin. 7 216 (in Chinese)
[28] Wahlquist H D and Estabrook F B 1973 Phys. Rev. Lett. 31 1386
Related articles from Frontiers Journals
[1] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 100202
[2] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 100202
[3] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 100202
[4] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 100202
[5] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 100202
[6] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 100202
[7] Zhong Han, Yong Chen. Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System[J]. Chin. Phys. Lett., 2017, 34(7): 100202
[8] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 100202
[9] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 100202
[10] Yun-Kai Liu, Biao Li. Rogue Waves in the (2+1)-Dimensional Nonlinear Schr?dinger Equation with a Parity-Time-Symmetric Potential[J]. Chin. Phys. Lett., 2017, 34(1): 100202
[11] Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He. Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2016, 33(11): 100202
[12] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 100202
[13] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 100202
[14] CHEN Hai, ZHOU Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2014, 31(12): 100202
[15] CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng, ZHU Han-Min. Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation[J]. Chin. Phys. Lett., 2014, 31(11): 100202
Viewed
Full text


Abstract