Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 018101    DOI: 10.1088/0256-307X/30/1/018101
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Fabrication of Thin Graphene Layers on a Stacked 6H-SiC Surface in a Graphite Enclosure
DENG Peng-Fei1, LEI Tian-Min1**, LU Jin-Jun3, LIU Fu-Yan2, ZHANG Yu-Ming2, GUO Hui2, ZHANG Yi-Men2, WANG Yue-Hu2, TANG Xiao-Yan2
1School of Technical Physics, Xidian University, Xi'an 710071
2School of Microelectronics, Xidian University, Xi'an 710071
3State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000
Cite this article:   
DENG Peng-Fei, LEI Tian-Min, LU Jin-Jun et al  2013 Chin. Phys. Lett. 30 018101
Download: PDF(1105KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Thin and homogeneous epitaxial graphene (EG) layers on a 6H-SiC (0001) substrate are fabricated and they cover the whole substrate (10×10 mm2). The sample surface is capped by another 6H-SiC (0001) wafer in a graphite enclosure to form a relatively high Si partial pressure between them, which significantly reduces the extremely high growth rate of EG. The structure and morphology of the EG layers are investigated by Raman spectroscopy, atomic force microscopy and field-emission scanning electronic microscopy. The results are compared with an uncapped sample surface, and reveal the obvious existence of ridges on the surface of the EG, and show that capping is indeed beneficial to obtain homogeneous graphene.
Received: 13 September 2012      Published: 04 March 2013
PACS:  81.05.ue (Graphene)  
  78.30.-j (Infrared and Raman spectra)  
  61.48.Gh (Structure of graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/018101       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/018101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DENG Peng-Fei
LEI Tian-Min
LU Jin-Jun
LIU Fu-Yan
ZHANG Yu-Ming
GUO Hui
ZHANG Yi-Men
WANG Yue-Hu
TANG Xiao-Yan
[1] Boehm H P, Clauss A, Fischer G O and Hofmann U 1962 Z. Für Naturforsch. 17b 150
[2] Van Bommel A, Crombeen J and van Tooren A 1975 Surf. Sci. 48 463
[3] Gall N R, RutKov E V and Tontegode A Y 1997 Int. J. Mod. Phys. B 11 1865
[4] De Heer W A and Berger C 2006 United States Patent US7015142
[5] Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N and de Heer W A 2004 J. Phys. Chem. B 108 19912
[6] Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2012 Chin. Phys. B 21 038102
[7] Yang Z, Gao R G, Hu N T, Chai J, Cheng Y W, Zhang L Y, Wei H, Kong E S W and Zhang Y F 2012 Nano-Micro Lett. 4 1
[8] Hu N T, Meng L, Gao R G, Wang Y Y, Chai J, Yang Z, Kong E S W and Zhang Y F 2011 Nano-Micro Lett. 3 215
[9] De Heer W A, Berger C, Ruan M, Sprinkle M, Li X B, Hu Y K, Zhang B, Hankinson J and Conrad E 2011 Proc. Natl. Acad. Sci. USA 108 16900
[10] Tromp R M and Hannon J B 2009 Phys. Rev. Lett. 102 106104
[11] Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov, J R?hrl, Rotenberg S A E, Schmid A K, Waldmann D, Weber H B and Seyller T 2009 Nat. Mater. 8 203
[12] Tedesc J L, Jernigan G G, Culbertson J C, Hite J K, Yang Y, Daniels K M, Myers-Ward R L, Eddy C R, Robinson J A, Trumbull K A, Wether-ington M T, Campbell P M and Gaskill D K 2010 Appl. Phys. Lett. 96 222103
[13] ?elebi C, Yan?k C, Demirkol A G and Kaya ? ? 2011 arXiv:1109.1726v1[cond-mat.mtrl-sci]
[14] ?elebi C, Yan?k C, Demirkol A G and Kaya ? ? 2012 Carbon 50 3026
[15] Burton J C, Sun L, Long F H, Feng Z C and Ferguson I T 1999 Phys. Rev. B 59 7282
[16] Kunert H W, Maurice T, Barnas J, Malherbe J, Brink D J and Prinsloo L 2005 Vacuum 78 503
[17] Ni Z H, Chen W, Fan X F, Kuo J L, Yu T, Wee A T S and Shen Z X 2008 Phys. Rev. B 77 115416
[18] Lee D S, Riedl C, Krauss B, Klitzing K V, Starke U and Smet J H 2008 Nano Lett. 8 4320
[19] Sun G F, Jia J F, Xue Q K and Li L 2009 Nanotechnology 20 355701
[20] Han S A, Choi I S, An H S, Lee H, Yong H D, Lee S W, Jung J W, Lee N S and Seo Y H 2011 J. Nanosci. Nanotechnol. 11 1
[21] Ferralis N, Maboudian R and Carraro C 2008 Phys. Rev. Lett. 101 156801
[22] Hass J, de Heer W A and Conrad E H 2008 J. Phys.: Condens. Matter 20 323202
Related articles from Frontiers Journals
[1] Jia-Jun Ma, Zhen-Yu Wang, Shui-Gang Xu, Yu-Xiang Gao, Yu-Yang Zhang, Qing Dai, Xiao Lin, Shi-Xuan Du, Jindong Ren, and Hong-Jun Gao. Local Density of States Modulated by Strain in Marginally Twisted Bilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(4): 018101
[2] Xiao-Feng Li, Ruo-Xuan Sun, Su-Yun Wang, Xiao Li, Zhi-Bo Liu, and Jian-Guo Tian. Recent Advances in Moiré Superlattice Structures of Twisted Bilayer and Multilayer Graphene[J]. Chin. Phys. Lett., 2022, 39(3): 018101
[3] Fuxin Wang, Chao Zhang, Yanmei Yang, Yuanyuan Qu, Yong-Qiang Li, Baoyuan Man, and Weifeng Li. Tuning the Water Desalination Performance of Graphenic Layered Nanomaterials by Element Doping and Inter-Layer Spacing[J]. Chin. Phys. Lett., 2020, 37(11): 018101
[4] Zhibin Zhang, Jiajie Qi, Mengze Zhao, Nianze Shang, Yang Cheng, Ruixi Qiao, Zhihong Zhang, Mingchao Ding, Xingguang Li, Kehai Liu, Xiaozhi Xu, Kaihui Liu, Can Liu, and Muhong Wu. Scrolled Production of Large-Scale Continuous Graphene on Copper Foils[J]. Chin. Phys. Lett., 2020, 37(10): 018101
[5] Zhong Wang, Zhiyang Yuan, and Feng Liu. Extended Nernst–Planck Equation Incorporating Partial Dehydration Effect[J]. Chin. Phys. Lett., 2020, 37(9): 018101
[6] Hao-Jing Zhang, Gai-Ge Zheng, Yun-Yun Chen, Xiu-Juan Zou, Lin-Hua Xu. A Perfect Graphene Absorber with Waveguide Coupled High-Contrast Gratings[J]. Chin. Phys. Lett., 2018, 35(3): 018101
[7] S. Fahad, M. Ali, S. Ahmed, S. Khan, S. Alam, S. Akhtar. Effect of Metal Contact and Rapid Thermal Annealing on Electrical Characteristics of Graphene Matrix[J]. Chin. Phys. Lett., 2017, 34(10): 018101
[8] Ren-Xia Ning, Zheng Jiao, Jie Bao. Narrow and Dual-Band Tunable Absorption of a Composite Structure with a Graphene Metasurface[J]. Chin. Phys. Lett., 2017, 34(10): 018101
[9] ZHANG Yu-Ping, LI Tong-Tong, LV Huan-Huan, HUANG Xiao-Yan, ZHANG Xiao, XU Shi-Lin, ZHANG Hui-Yun. Graphene-Based Tunable Polarization Insensitive Dual-Band Metamaterial Absorber at Mid-Infrared Frequencies[J]. Chin. Phys. Lett., 2015, 32(06): 018101
[10] GAO Chuan-Wei, WANG Ying-Ying, JIANG Jie, NAN Hai-Yan, NI Zhen-Hua. Raman Study of Polydimethylsiloxane Substrate Effect on Hydrogenation of Graphene[J]. Chin. Phys. Lett., 2015, 32(5): 018101
[11] ZHOU Xiang, CHEN Ji, GU Lin, MIAO Ling. Li Storage Performance for the Composite Structure Of Graphene and Boron Fullerene[J]. Chin. Phys. Lett., 2015, 32(02): 018101
[12] LIU Qing-Bin, YU Cui, LI Jia, SONG Xu-Bo, HE Ze-Zhao, LU Wei-Li, GU Guo-Dong, WANG Yuan-Gang, FENG Zhi-Hong. Radio-Frequency Performance of Epitaxial Graphene Field-Effect Transistors on Sapphire Substrates[J]. Chin. Phys. Lett., 2014, 31(07): 018101
[13] LUO Wen-Gang, WANG Hua-Feng, CAI Kai-Ming, HAN Wen-Peng, TAN Ping-Heng, HU Ping-An, WANG Kai-You. Synthesis of Homogenous Bilayer Graphene on Industrial Cu Foil[J]. Chin. Phys. Lett., 2014, 31(06): 018101
[14] CHEN Ya-Qin. Determination of the In-Plane Optical Conductivity of Multilayer Graphene Supported on a Transparent Substrate of Finite Thickness from Normal-Incidence Transmission Spectra[J]. Chin. Phys. Lett., 2014, 31(05): 018101
[15] Tatnatchai Suwannasit, Rassmidara Hoonsawat, I-Ming Tang, Bumned Soodchomshom. Josephson Effect in Graphene: Comparison of Real and Pseudo Vector Potential Barriers[J]. Chin. Phys. Lett., 2014, 31(03): 018101
Viewed
Full text


Abstract