CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
|
|
|
|
Fabrication of Thin Graphene Layers on a Stacked 6H-SiC Surface in a Graphite Enclosure |
DENG Peng-Fei1, LEI Tian-Min1**, LU Jin-Jun3, LIU Fu-Yan2, ZHANG Yu-Ming2, GUO Hui2, ZHANG Yi-Men2, WANG Yue-Hu2, TANG Xiao-Yan2 |
1School of Technical Physics, Xidian University, Xi'an 710071 2School of Microelectronics, Xidian University, Xi'an 710071 3State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000
|
|
Cite this article: |
DENG Peng-Fei, LEI Tian-Min, LU Jin-Jun et al 2013 Chin. Phys. Lett. 30 018101 |
|
|
Abstract Thin and homogeneous epitaxial graphene (EG) layers on a 6H-SiC (0001) substrate are fabricated and they cover the whole substrate (10×10 mm2). The sample surface is capped by another 6H-SiC (0001) wafer in a graphite enclosure to form a relatively high Si partial pressure between them, which significantly reduces the extremely high growth rate of EG. The structure and morphology of the EG layers are investigated by Raman spectroscopy, atomic force microscopy and field-emission scanning electronic microscopy. The results are compared with an uncapped sample surface, and reveal the obvious existence of ridges on the surface of the EG, and show that capping is indeed beneficial to obtain homogeneous graphene.
|
|
Received: 13 September 2012
Published: 04 March 2013
|
|
|
|
|
|
[1] Boehm H P, Clauss A, Fischer G O and Hofmann U 1962 Z. Für Naturforsch. 17b 150 [2] Van Bommel A, Crombeen J and van Tooren A 1975 Surf. Sci. 48 463 [3] Gall N R, RutKov E V and Tontegode A Y 1997 Int. J. Mod. Phys. B 11 1865 [4] De Heer W A and Berger C 2006 United States Patent US7015142 [5] Berger C, Song Z M, Li T B, Li X B, Ogbazghi A Y, Feng R, Dai Z T, Marchenkov A N, Conrad E H, First P N and de Heer W A 2004 J. Phys. Chem. B 108 19912 [6] Wang D C, Zhang Y M, Zhang Y M, Lei T M, Guo H, Wang Y H, Tang X Y and Wang H 2012 Chin. Phys. B 21 038102 [7] Yang Z, Gao R G, Hu N T, Chai J, Cheng Y W, Zhang L Y, Wei H, Kong E S W and Zhang Y F 2012 Nano-Micro Lett. 4 1 [8] Hu N T, Meng L, Gao R G, Wang Y Y, Chai J, Yang Z, Kong E S W and Zhang Y F 2011 Nano-Micro Lett. 3 215 [9] De Heer W A, Berger C, Ruan M, Sprinkle M, Li X B, Hu Y K, Zhang B, Hankinson J and Conrad E 2011 Proc. Natl. Acad. Sci. USA 108 16900 [10] Tromp R M and Hannon J B 2009 Phys. Rev. Lett. 102 106104 [11] Bostwick A, Horn K, Jobst J, Kellogg G L, Ley L, McChesney J L, Ohta T, Reshanov, J R?hrl, Rotenberg S A E, Schmid A K, Waldmann D, Weber H B and Seyller T 2009 Nat. Mater. 8 203 [12] Tedesc J L, Jernigan G G, Culbertson J C, Hite J K, Yang Y, Daniels K M, Myers-Ward R L, Eddy C R, Robinson J A, Trumbull K A, Wether-ington M T, Campbell P M and Gaskill D K 2010 Appl. Phys. Lett. 96 222103 [13] ?elebi C, Yan?k C, Demirkol A G and Kaya ? ? 2011 arXiv:1109.1726v1[cond-mat.mtrl-sci] [14] ?elebi C, Yan?k C, Demirkol A G and Kaya ? ? 2012 Carbon 50 3026 [15] Burton J C, Sun L, Long F H, Feng Z C and Ferguson I T 1999 Phys. Rev. B 59 7282 [16] Kunert H W, Maurice T, Barnas J, Malherbe J, Brink D J and Prinsloo L 2005 Vacuum 78 503 [17] Ni Z H, Chen W, Fan X F, Kuo J L, Yu T, Wee A T S and Shen Z X 2008 Phys. Rev. B 77 115416 [18] Lee D S, Riedl C, Krauss B, Klitzing K V, Starke U and Smet J H 2008 Nano Lett. 8 4320 [19] Sun G F, Jia J F, Xue Q K and Li L 2009 Nanotechnology 20 355701 [20] Han S A, Choi I S, An H S, Lee H, Yong H D, Lee S W, Jung J W, Lee N S and Seo Y H 2011 J. Nanosci. Nanotechnol. 11 1 [21] Ferralis N, Maboudian R and Carraro C 2008 Phys. Rev. Lett. 101 156801 [22] Hass J, de Heer W A and Conrad E H 2008 J. Phys.: Condens. Matter 20 323202 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|