Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 017902    DOI: 10.1088/0256-307X/30/1/017902
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Elimination of the Schottky Barrier at an Au-ZnSe Nanowire Nanocontact via in Situ Joule Heating
TAN Yu1, WANG Yan-Guo2**
1Science College, Hunan Agricultural University, Changsha 410128
2Beijing Laboratory of Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P. O. Box 603, Beijing 100190
Cite this article:   
TAN Yu, WANG Yan-Guo 2013 Chin. Phys. Lett. 30 017902
Download: PDF(757KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In order to improve electron transport, in situ Joule heating of an Au-ZnSe nanowire-Au (M-S-M) nanostructure is conducted inside transmission electron microscopy (TEM) until the Au metal is molten at the reversely biased Au-ZnSe nanowire (M-S) nanocontact. The observed microstructural evolution is responsible for the electron transport property changes, i.e. a nonlinear to linear transformation in the current-voltage (IV) relationship was measured in situ before and after the Joule annealing. The linear characteristic in the IV relationship confirms elimination of the Schottky barrier at the M-S nanocontact and formation of ohmic contacts. Consequently, electron transport at the M-S nanocontact can be significantly improved by the removal of the Schottky barrier via in situ Joule heating.
Received: 05 September 2012      Published: 04 March 2013
PACS:  79.70.+q (Field emission, ionization, evaporation, and desorption)  
  68.37.Hk (Scanning electron microscopy (SEM) (including EBIC))  
  81.07.De (Nanotubes)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/017902       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/017902
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
TAN Yu
WANG Yan-Guo
[1] Zhuang et al 2012 J. Phys. Chem. C 116 8819
[2] M?nch W 2004 Electronic Properties of Semiconductor Interfaces (Berlin: Springer)
[3] Chiquito et al 2012 J. Phys.: Condens. Matter 24 225303
[4] Liu L M et al 1995 J. Vac. Sci. Technol. B 13 2238
[5] Park M R et al 1999 Solid-State Electron. 43 113
[6] Schwarz R et al 1997 J. Alloys Comp. 247 158
[7] Zeng Y P et al 2012 Chin. Phys. Lett. 29 088105
[8] Tan Y and Wang Y G 2013 Chin. Phys. Lett. 30 017901
[9] Bakan G et al 2009 Appl. Phys. Lett. 94 251910
[10] Kohno H et al 2009 Nanoscale 1 344
[11] Hummelg?rd M et al 2010 Nanotechnology 21 165704
[12] Davami K et al 2011 Nanotechnology 22 435204
[13] Wang Y G et al 2010 J. Phys. Chem. C 114 12839
[14] Tohmyoh H et al 2007 Scr. Mater. 57 953
[15] Blomfield C J et al 1996 J. Cryst. Growth 159 727
[16] Coratger R et al 1997 J. Appl. Phys. 81 7870
[17] Xu Z et al 2009 Nano Lett. 9 2251
[18] Nie A M et al 2011 Nanotechnology 22 405703
[19] Kaye G W C and Laby T H 1995 Tables of Physical and Chemical Constants (London: Longman)
[20] Zhang Z Y et al 2006 Appl. Phys. Lett. 88 073102
[21] Einfeldt S et al 1995 Phys. Status Solidi 187 439
[22] Yu A Y C 1970 Solid-State Electron. 13 239
[23] Cho S M et al 1991 J. Appl. Phys. 70 282
[24] Chen Z H et al 2005 Nano Lett. 5 1497
[25] Cui Y et al 2003 Nano Lett. 3 149
Related articles from Frontiers Journals
[1] Jin-Di Wei, Yun-Hui Li, Geng-Min Zhang, Jin Yang, Ying-Jie Xing, Wen-Sheng Zhou. Curbing Charging Currents in Pulsed Field Emission by Prolonging Pulse Edges[J]. Chin. Phys. Lett., 2018, 35(5): 017902
[2] TAN Yu, WANG Yan-Guo. Current Density-Dependent Thermal Stability of ZnSe Nanowire in M-S-M Nanostructure[J]. Chin. Phys. Lett., 2014, 31(12): 017902
[3] LIU Yang, HUANG Xu-Dong, FENG Yu-Jun, HE Hong-Liang. Controlling Factors of the Electric Field at the Triple Junction[J]. Chin. Phys. Lett., 2014, 31(2): 017902
[4] TAN Yu, WANG Yan-Guo. Strain-Sensitive Current-Voltage Characteristics of ZnSe Nanowire in Metal-Semiconductor-Metal Nanostructure[J]. Chin. Phys. Lett., 2013, 30(11): 017902
[5] TAN Yu, WANG Yan-Guo. The Effect of an Incident Electron Beam on the IV Characteristics of a Au-ZnSe Nanowire-Au Nanostructure[J]. Chin. Phys. Lett., 2013, 30(4): 017902
[6] TAN Yu, WANG Yan-Guo. Current Density-Sensitive Welding of a Semiconductor Nanowire to a Metal Electrode[J]. Chin. Phys. Lett., 2013, 30(1): 017902
[7] YANG Yan-Ning, ZHANG Zhi-Yong**, ZHANG Fu-Chun, DONG Jun-Tang, ZHAO Wu, ZHAI Chun-Xue, ZHANG Wei-Hu. The Field Emission Characteristics of Titanium-Doped Nano-Diamonds[J]. Chin. Phys. Lett., 2012, 29(1): 017902
[8] WANG Li-Jun, ZHU Yu-Zhuan, WANG Xiao-Ping, ZHANG Shi, LIU Xin-Xin, LI Huai-Hui, MEI Cui-Yu, LIU Xiao-Fei. Field Electron Emission from Caterpillar-Like Clavae Nano-Structure Carbon Thin Films[J]. Chin. Phys. Lett., 2010, 27(8): 017902
[9] JI Zhong-Hua, WU Ji-Zhou, MA Jie, FENG Zhi-Gang, ZHANG Lin-Jie, ZHAO Yan-Ting, WANG Li-Rong, XIAO Lian-Tuan, JIA Suo-Tang. Ionization Detection of Ultracold Ground State Cesium Molecules[J]. Chin. Phys. Lett., 2010, 27(5): 017902
[10] WANG Tao, LI Rui-Shan, PAN Xiao-Jun, ZHANG Pei-Zeng, ZHOU Ming, SONGXi, XIE Er-Qing. Improvement of Field Emission Characteristics of Copper Nitride Films with Increasing Copper Content[J]. Chin. Phys. Lett., 2009, 26(6): 017902
[11] ZHANG Yang, DIAO Da-Sheng. Enhanced Field Emission from Vertical ZnO Nanoneedles on Micropyramids[J]. Chin. Phys. Lett., 2009, 26(3): 017902
[12] WANG Long-Yang, WANG Xiao-Ping, WANG Li-Jun, ZHANG Lei. Field Emission Properties of Ball-Like Nano-Carbon Thin Films Deposited on Mo Films with Accidented Topography[J]. Chin. Phys. Lett., 2008, 25(11): 017902
[13] LI Jun, WANG Ru-Zhi, LAN Wei, ZHANG Xing-Wang, DUAN Zhi-Qiang, WANG Bo, YAN Hui. Enhancement of Field Emission Properties in La-Doped ZnO Films Prepared by Magnetron Sputtering[J]. Chin. Phys. Lett., 2008, 25(7): 017902
[14] FENG Zhi-Gang, ZHANG Lin-Jie, ZHAO Jian-Ming, LI Chang-Yong, LI An-Ling, JIA Suo-Tang. Measurement of Ionization Threshold of Ultracold Cesium Rydberg Atoms in Static Electric Field[J]. Chin. Phys. Lett., 2008, 25(7): 017902
[15] FU Xiao-Nan, LI Xin-Jian. Enhanced Field Emission of Composite Au Nanostructured Network n Si Nanoporous Pillar Array[J]. Chin. Phys. Lett., 2007, 24(8): 017902
Viewed
Full text


Abstract