Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 017201    DOI: 10.1088/0256-307X/30/1/017201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Spin-Dependent Electron Transport in an Armchair Graphene Nanoribbon Subject to Charge and Spin Biases
ZHANG Xiao-Wei**, ZHAO Hua, SANG Tian, LIU Xiao-Chun, CAI Tuo
Qiannan Normal College for Nationalities, Duyun 558000
Cite this article:   
ZHANG Xiao-Wei, ZHAO Hua, SANG Tian et al  2013 Chin. Phys. Lett. 30 017201
Download: PDF(457KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We study the spin-dependent electron transport in an armchair graphene nanoribbon sample driven by both the charge and the spin biases within the tight-binding framework. By numerical calculations we give the spin-dependent currents for a fixed spin bias as a function of the charge bias. It is found that we can let only one type of spin current pass through the graphene nanoribbon for a wide range of charge bias, which is due to the difference of the bias voltage windows for different spin electrons when the charge and the spin biases coexist. Moreover, the pure spin current can be controlled via the charge bias. Our results are suggestive for developing new kinds of spin filters.
Received: 13 September 2012      Published: 04 March 2013
PACS:  72.25.-b (Spin polarized transport)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  72.80.Vp (Electronic transport in graphene)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/017201       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/017201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
ZHANG Xiao-Wei
ZHAO Hua
SANG Tian
LIU Xiao-Chun
CAI Tuo
[1] Zutic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323
[2] Sun Q F and Xie X C 2005 Phys. Rev. B 71 155321
[3] Liu G H and Zhou G H 2005 Chin. Phys. Lett. 22 3159
[4] Jin D F et al 2006 Phys. Rev. B 73 012414
[5] Dey M, Maiti S K and Karmakar S N 2010 Phys. Lett. A 374 1522
[6] Fang M and Sun L L 2008 Chin. Phys. Lett. 25 3389
[7] Chi F and Yuan X Q 2009 Chin. Phys. Lett. 26 097301
[8] Liao Z M et al 2006 Nano Lett. 6 1087
[9] Tombros N et al 2007 Nature 448 571
[10] Karpan V M et al 2007 Phys. Rev. Lett. 99 176602
[11] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347
[12] Semenov Y G, Kim K W and Zavada J M 2007 Appl. Phys. Lett. 91 153105
[13] Zhang Y T, Jiang H, Sun Q F and Xie X C 2010 Phys. Rev. B 81 165404
[14] Saffarzadeh A and Farghadan R 2011 Appl. Phys. Lett. 98 023106
[15] Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B 69 205312
[16] Chi F and Li S S 2005 Chin. Phys. Lett. 22 2035
[17] Long W et al 2003 Appl. Phys. Lett. 83 1397
[18] Frolov S M et al 2009 Phys. Rev. Lett. 102 116802
[19] Bao Y J et al 2008 Europhys. Lett. 83 37007
[20] Lu H Z and Shen S Q 2008 Phys. Rev. B 77 235309
[21] Chi F and Sun Q F 2010 Phys. Rev. B 81 075310
[22] Zhao H et al 2011 Commun. Theor. Phys. 55 359
[23] Xing Y X, Sun Q F and Wang J 2008 Appl. Phys. Lett. 93 142107
[24] Gong W J et al 2011 Phys. Lett. A 375 1333
[25] Maiti S K 2009 Solid State Commun. 149 973
[26] Datta S 1995 Electron. Transport Mesoscopic Syst. (Cambridge: Cambridge University Press) vol 1
[27] Mujica V, Kemp M and Ratner M A 1994 J. Chem. Phys. 101 6849
[28] Dey M, Maiti S K and Karmakar S N 2011 Eur. Phys. J. B 80 105
[29] Dey M, Maiti S K and Karmakar S N 2011 J. Comput. Theor. Nanosci. 8 253
[30] Maiti S K 2007 Physica B 394 33
[31] Maiti S K 2007 Phys. Scr. 75 62
[32] Maiti S K 2009 Solid State Commun. 149 1684
Related articles from Frontiers Journals
[1] Haiyang Pan, Xiaobo Wang, Qiaoming Wang, Xiaohua Wu, Chang Liu, Nian Lin, and Yue Zhao. Proximity Effect of Epitaxial Iron Phthalocyanine Molecules on High-Quality Graphene Devices[J]. Chin. Phys. Lett., 2021, 38(8): 017201
[2] Weihao Cao, Matisse Wei-Yuan Tu, Jiang Xiao, and Wang Yao. Giant Spin Transfer Torque in Atomically Thin Magnetic Bilayers[J]. Chin. Phys. Lett., 2020, 37(10): 017201
[3] Chao Yang, Zheng-Chuan Wang, and Gang Su. Magnetization Reversal of Single-Molecular Magnets by a Spin-Polarized Current[J]. Chin. Phys. Lett., 2020, 37(8): 017201
[4] He-Nan Fang, Yuan-Yuan Zhong, Ming-Wen Xiao, Xuan Zang, Zhi-Kuo Tao. Effect of Lattice Distortion on the Magnetic Tunnel Junctions Consisting of Periodic Grating Barrier and Half-Metallic Electrodes[J]. Chin. Phys. Lett., 2020, 37(3): 017201
[5] Xiao-Xue Zhang, Yao-Hui Zhu, Pei-Song He, Bao-He Li. Mechanisms of Spin-Dependent Heat Generation in Spin Valves[J]. Chin. Phys. Lett., 2017, 34(6): 017201
[6] Feng Chi, Lian-Liang Sun. Photon-Assisted Heat Generation by Electric Current in a Quantum Dot Attached to Ferromagnetic Leads[J]. Chin. Phys. Lett., 2016, 33(11): 017201
[7] NIU Peng-Bin, SHI Yun-Long, SUN Zhu, NIE Yi-Hang, LUO Hong-Gang. Phonon-Assisted Spin Current in Single Molecular Magnet Junctions[J]. Chin. Phys. Lett., 2015, 32(11): 017201
[8] A. John Peter, Chang Woo Lee. Photo-Induced Electron Spin Polarization in a Narrow Band Gap Semiconductor Nanostructure[J]. Chin. Phys. Lett., 2012, 29(11): 017201
[9] LI Bo-Xin, ZHENG Jun, CHI Feng. Spin-Selective Transport of Electron in a Quantum Dot under Magnetic Field[J]. Chin. Phys. Lett., 2012, 29(10): 017201
[10] FANG Dong-Kai, WU Shao-Quan, ZOU Cheng-Yi, ZHAO Guo-Ping. Effect of Electronic Correlations on Magnetotransport through a Parallel Double Quantum Dot[J]. Chin. Phys. Lett., 2012, 29(3): 017201
[11] LI Jin-Liang, LI Yu-Xian. Spin Current Through Triple Quantum Dot in the Presence of Rashba Spin-Orbit Interaction[J]. Chin. Phys. Lett., 2010, 27(5): 017201
[12] Eerdunchaolu, XIN Wei, ZHAO Yu-Wei. Influence of Rashba SOI and Polaronic Effects on the Ground-State Energy of Electrons in Semiconductor Quantum Rings[J]. Chin. Phys. Lett., 2010, 27(1): 017201
[13] CHI Feng, YUAN Xi-Qiu. Triple Quantum Dot Molecule as a Spin-Splitter[J]. Chin. Phys. Lett., 2009, 26(9): 017201
[14] TANG Xiao-Li, ZHANG Huai-Wu, SU Hua, JING Yu-Lan. Large Magnetoresistance Based on Double Spin Filter Tunnel Barriers[J]. Chin. Phys. Lett., 2008, 25(10): 017201
[15] LI Yu-Xian. Spin Polarization and Andreev Conductance through a Diluted Magnetic Semiconductor Quantum Wire with Spin--Orbit Interaction[J]. Chin. Phys. Lett., 2008, 25(10): 017201
Viewed
Full text


Abstract