CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Spin-Dependent Electron Transport in an Armchair Graphene Nanoribbon Subject to Charge and Spin Biases |
ZHANG Xiao-Wei**, ZHAO Hua, SANG Tian, LIU Xiao-Chun, CAI Tuo |
Qiannan Normal College for Nationalities, Duyun 558000
|
|
Cite this article: |
ZHANG Xiao-Wei, ZHAO Hua, SANG Tian et al 2013 Chin. Phys. Lett. 30 017201 |
|
|
Abstract We study the spin-dependent electron transport in an armchair graphene nanoribbon sample driven by both the charge and the spin biases within the tight-binding framework. By numerical calculations we give the spin-dependent currents for a fixed spin bias as a function of the charge bias. It is found that we can let only one type of spin current pass through the graphene nanoribbon for a wide range of charge bias, which is due to the difference of the bias voltage windows for different spin electrons when the charge and the spin biases coexist. Moreover, the pure spin current can be controlled via the charge bias. Our results are suggestive for developing new kinds of spin filters.
|
|
Received: 13 September 2012
Published: 04 March 2013
|
|
PACS: |
72.25.-b
|
(Spin polarized transport)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
72.80.Vp
|
(Electronic transport in graphene)
|
|
|
|
|
[1] Zutic I, Fabian J and Sarma S D 2004 Rev. Mod. Phys. 76 323 [2] Sun Q F and Xie X C 2005 Phys. Rev. B 71 155321 [3] Liu G H and Zhou G H 2005 Chin. Phys. Lett. 22 3159 [4] Jin D F et al 2006 Phys. Rev. B 73 012414 [5] Dey M, Maiti S K and Karmakar S N 2010 Phys. Lett. A 374 1522 [6] Fang M and Sun L L 2008 Chin. Phys. Lett. 25 3389 [7] Chi F and Yuan X Q 2009 Chin. Phys. Lett. 26 097301 [8] Liao Z M et al 2006 Nano Lett. 6 1087 [9] Tombros N et al 2007 Nature 448 571 [10] Karpan V M et al 2007 Phys. Rev. Lett. 99 176602 [11] Son Y W, Cohen M L and Louie S G 2006 Nature 444 347 [12] Semenov Y G, Kim K W and Zavada J M 2007 Appl. Phys. Lett. 91 153105 [13] Zhang Y T, Jiang H, Sun Q F and Xie X C 2010 Phys. Rev. B 81 165404 [14] Saffarzadeh A and Farghadan R 2011 Appl. Phys. Lett. 98 023106 [15] Wang D K, Sun Q F and Guo H 2004 Phys. Rev. B 69 205312 [16] Chi F and Li S S 2005 Chin. Phys. Lett. 22 2035 [17] Long W et al 2003 Appl. Phys. Lett. 83 1397 [18] Frolov S M et al 2009 Phys. Rev. Lett. 102 116802 [19] Bao Y J et al 2008 Europhys. Lett. 83 37007 [20] Lu H Z and Shen S Q 2008 Phys. Rev. B 77 235309 [21] Chi F and Sun Q F 2010 Phys. Rev. B 81 075310 [22] Zhao H et al 2011 Commun. Theor. Phys. 55 359 [23] Xing Y X, Sun Q F and Wang J 2008 Appl. Phys. Lett. 93 142107 [24] Gong W J et al 2011 Phys. Lett. A 375 1333 [25] Maiti S K 2009 Solid State Commun. 149 973 [26] Datta S 1995 Electron. Transport Mesoscopic Syst. (Cambridge: Cambridge University Press) vol 1 [27] Mujica V, Kemp M and Ratner M A 1994 J. Chem. Phys. 101 6849 [28] Dey M, Maiti S K and Karmakar S N 2011 Eur. Phys. J. B 80 105 [29] Dey M, Maiti S K and Karmakar S N 2011 J. Comput. Theor. Nanosci. 8 253 [30] Maiti S K 2007 Physica B 394 33 [31] Maiti S K 2007 Phys. Scr. 75 62 [32] Maiti S K 2009 Solid State Commun. 149 1684 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|