Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 017202    DOI: 10.1088/0256-307X/30/1/017202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Efficiency Enhancement of MEH-PPV:PCBM Solar Cells by Addition of Ditertutyl Peroxide as an Additive
LI Yan-Fang1,2, YANG Li-Ying1,2**, QIN Wen-Jing1,2**, YIN Shou-Gen1,2**, ZHANG Feng-Ling1,3
1Key Laboratory of Display Materials & Photoelectric Devices (Ministry of Education) and School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384
2Tianjin Key Lab for Photoelectric Materials & Devices, Tianjin 300384
3Biomolecular and Organic Electronics, Center of Organic Electronics, Department of Physics, Chemistry and Biology (IFM), Link?ping University, SE-581 83 Link?ping, Sweden
Cite this article:   
LI Yan-Fang, YANG Li-Ying, QIN Wen-Jing et al  2013 Chin. Phys. Lett. 30 017202
Download: PDF(655KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Improved power conversion efficiency (PCE) and stability of organic bulk heterojunction (BHJ) solar cells based on poly (2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene) (MEH-PPV) and methanofullerene [6,6]-phenyl C61-butyric acid methyl ester (PCBM) blends are obtained by using ditert butyl peroxide (DTBP) as an additive. The effect of the DTBP contents on the performance of photovoltaic cells is investigated. The results reveal that efficiency enhancement of MEH-PPV:PCBM solar cells can be realized by carefully tuning the contents of DTBP. Compared to the control device, the optimized device with 0.5wt% DTBP additive exhibits enhanced performance with Jsc of (3.51±0.21) mA/cm2, FF of (44.45±0.71)%, and PCE of (1.31±0.08)%, increased by 9.3%, 8.0% and 22.4%, respectively. The stability of the device is found to be improved by adding 0.5wt% of DTBP.
Received: 12 October 2012      Published: 04 March 2013
PACS:  72.80.Le (Polymers; organic compounds (including organic semiconductors))  
  88.40.jr (Organic photovoltaics)  
  72.40.+w (Photoconduction and photovoltaic effects)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/017202       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/017202
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Yan-Fang
YANG Li-Ying
QIN Wen-Jing
YIN Shou-Gen
ZHANG Feng-Ling
[1] Yu G, Gao J, Hummelen J C, Wudl F and Heeger A J 1995 Science 270 1789
[2] Hou J H, Chen H Y, Zhang S Q, Chen R I, Yang Y, Wu Y and Li G 2009 J. Am. Chem. Soc. 131 15586
[3] Chen H Y, Hou J H, Zhang S Q, Liang Y Y, Yang G W, Yang Y, Yu L P, Wu Y and Li G 2009 Nat. Photon. 3 649
[4] Kim J Y, Kim S H, Lee H H, Lee K, Ma W, Gong X and Heeger A J 2006 Adv. Mater. 18 572
[5] Li G, Shrotriya V, Huang J S, Yao Y, Moriarty T, Emery K and Yang Y 2005 Nat. Mater. 4 864
[6] He Z C, Zhong C M, Huang X, Wong W Y, Wu H B, Chen L W, Su S J and Cao Y 2011 Adv. Mater. 23 4636
[7] Hoven C V, Dang X D, Coffin R C, Peet J, Nguyen T Q and Bazan G C 2010 Adv. Mater. 22 63
[8] Scharber M C, Mühlbacher D, Koppe M, Denk P, Waldauf C, Heeger A J and Brabec C J 2006 Adv. Mater. 18 789
[9] Ma W L, Gopinathan A and Heeger A J 2007 Adv. Mater. 19 3656
[10] Yang X N, Loos J, Veenstra S C, Verhees W J H, Wienk M M, Kroon J M, Michels M A J and Janssen R A J 2005 Nano Lett. 5 579
[11] Xu H, Yang L Y, Tian H, Yin S G and Zhang F L 2010 Optoelectron. Lett. 6 176
[12] Wu J, Guo X Y and Xie Z Y 2012 Chin. Phys. Lett. 29 098801
[13] Chen Z, Deng Z B, Zhou M Y, Lü Z Y, Du H L, Zou Y, Yin Y H and Lun J C 2012 Chin. Phys. Lett. 29 078801
[14] Guo X Y, Luo J S, Chen H and Liu X Y 2012 Chin. Phys. Lett. 29 088801
[15] Yao C, Yang L Y, Wang Y L, Qin W J, Yin S G and Zhang F L 2011 Optoelectron. Lett. 7 246
[16] Li G, Yao Y, Yang H, Shrotriya V, Yang G and Yang Y 2007 Adv. Funct. Mater. 17 1636
[17] Padinger F, Rittberger R S and Sariciftci N S 2003 Adv. Funct. Mater. 13 85
[18] Kroon J M, Wienk M M, Verhees W J H and Hummelen J C 2002 Thin Solid Films 223 403
[19] Chen H Y, Yang H, Yang G, Sista S, Zadoyan R, Li G and Yang Y 2009 J J. Phys. Chem. C 113 7946
[20] Yao Y, Hou J, Xu Z, Li G and Yang Y 2008 Adv. Funct. Mater. 18 1783
[21] Shukla M and Brahme N 2011 Polym. Bull. 67 709
[22] Gunes S, Neugebauer H and Sariciftci N S 2007 Chem. Rev. 107 1324
[23] Thompson B C and Fréchet J M J 2008 Angew. Chem. Int. Ed. 47 58
[24] Tan Z A, Yang C H, Zhou E J, Wang X and Li Y F 2007 Appl. Phys. Lett. 91 023509
Related articles from Frontiers Journals
[1] Sai Jiang, Lichao Peng, Xiaosong Du, Qinyong Dai, Jianhang Guo, Jianhui Gu, Jian Su, Ding Gu, Qijing Wang, Huafei Guo, Jianhua Qiu, and Yun Li. Large-Area Monolayer n-Type Molecular Semiconductors with Improved Thermal Stability and Charge Injection[J]. Chin. Phys. Lett., 2023, 40(3): 017202
[2] Yanjing Tang, Xianxi Yu, Shaobo Liu, Anran Yu, Jiajun Qin, Ruichen Yi, Yuan Pei, Chunqin Zhu, Xiaoyuan Hou. Hole Injection Enhancement of MoO$_{3}$/NPB/Al Composite Anode[J]. Chin. Phys. Lett., 2019, 36(12): 017202
[3] Ning-Ning Chen, Wan-Yi Tan, Dong-Yu Gao, Jian-Hua Zou, Jun-Zhe Liu, Jun-Biao Peng, Yong Cao, Xu-Hui Zhu. BiPh-$m$-BiDPO as a Hole-Blocking Layer for Organic Light-Emitting Diodes: Revealing Molecular Structure-Properties Relationship[J]. Chin. Phys. Lett., 2017, 34(7): 017202
[4] Rong-Hui Quan, Kai Zhou, Mei-Hua Fang, Wei-Ying Chi, Zhen-Long Zhang. Fast Measurement of Dielectric Conductivity for Space Application by Surface Potential Decay Method[J]. Chin. Phys. Lett., 2017, 34(6): 017202
[5] Min-Nan Guo, Shao-Wei Liu, Na Guo, Li-Ying Yang, Wen-Jing Qin, Shou-Gen Yin. Performance and Stability of Polymer Solar Cells Based on the Blends of Poly(3-Hexylthiophene) and Indene-C$_{60}$ Bis-Adduct[J]. Chin. Phys. Lett., 2016, 33(07): 017202
[6] Yuan-Yuan Hou, Jiang-Hong Li, Xiao-Xiang Ji, Ya-Feng Wu, Wei Fan, Igbari Femi. Highly Efficient and Stable Hybrid White Organic Light Emitting Diodes with Controllable Exciton Behavior by a Mixed Bipolar Interlayer[J]. Chin. Phys. Lett., 2016, 33(07): 017202
[7] Shuang Cheng, Jian-Qi Shen, Zhi-Qi Kou, Xiao-Ping Wang. Influence of Blocking Interlayer in Blue Organic Light-Emitting Diodes with Different Thicknesses of Emitting Layer and Interlayer[J]. Chin. Phys. Lett., 2016, 33(02): 017202
[8] JIAO Bo, YAO Li-Juan, WU Chun-Fang, DONG Hua, HOU Xun, WU Zhao-Xin. Room-Temperature Organic Negative Differential Resistance Device Using CdSe Quantum Dots as the ITO Modification Layer[J]. Chin. Phys. Lett., 2015, 32(11): 017202
[9] DING Lei, LI Huai-Kun, ZHANG Mai-Li, CHENG Jun, ZHANG Fang-Hui. High-Performance Hybrid White Organic Light-Emitting Diodes Utilizing a Mixed Interlayer as the Universal Carrier Switch[J]. Chin. Phys. Lett., 2015, 32(10): 017202
[10] ZHANG Hong-Mei, WANG Dan-Bei, WU Yuan-Wu, FANG Da, HUANG Wei. High-Efficiency Bottom-Emitting Organic Light-Emitting Diodes with Double Aluminum as Electrodes[J]. Chin. Phys. Lett., 2015, 32(10): 017202
[11] MU Ye, ZHANG Zhen-Song, WANG Hong-Bo, QU Da-Long, WU Yu-Kun, YAN Ping-Rui, LI Chuan-Nan, ZHAO Yi. Top-Emitting White Organic Light-Emitting Diodes Based on Cu as Both Anode and Cathode[J]. Chin. Phys. Lett., 2015, 32(09): 017202
[12] ZHANG Hong-Mei, WANG Dan-Bei, ZENG Wen-Jin, YAN Min-Nan. High-Efficiency Green Phosphorescent Organic Light-Emitting Diode Based on Simplified Device Structures[J]. Chin. Phys. Lett., 2015, 32(09): 017202
[13] XIANG Lan-Yi, YING Jun, HAN Jin-Hua, WANG Wei, XIE Wen-Fa. Solution-Processed High Mobility Top-Gate N-Channel Polymer Field-Effect Transistors[J]. Chin. Phys. Lett., 2015, 32(09): 017202
[14] ZHANG Wen-Wen, WU Zhao-Xin, LIU Ying-Wen, DONG Jun, YAN Xue-Wen, HOU Xun. Thermal Analysis of Organic Light Emitting Diodes Based on Basic Heat Transfer Theory[J]. Chin. Phys. Lett., 2015, 32(08): 017202
[15] ZHANG Ruo-Chuan, WANG Meng-Ying, YANG Li-Ying, QIN Wen-Jing, YIN Shou-Gen. Polymer Solar Cells Using a PEDOT:PSS/Cu Nanowires/PEDOT:PSS Multilayer as the Anode Interlayer[J]. Chin. Phys. Lett., 2015, 32(07): 017202
Viewed
Full text


Abstract