Chin. Phys. Lett.  2013, Vol. 30 Issue (1): 017103    DOI: 10.1088/0256-307X/30/1/017103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
First-Principles Calculation of Lithium Adsorption and Diffusion on Silicene
HUANG Juan, CHEN Hong-Jin, WU Mu-Sheng, LIU Gang, OUYANG Chu-Ying, XU Bo**
College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022
Cite this article:   
HUANG Juan, CHEN Hong-Jin, WU Mu-Sheng et al  2013 Chin. Phys. Lett. 30 017103
Download: PDF(683KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The adsorption and diffusion of lithium on silicene are studied by using the first-principles method. It is found that the adsorption energy of Li adsorbing on silicene is significantly larger than that of Li adsorbing on graphene. With the increasing concentration of adsorbed Li atoms, the adsorption energy also increases. The diffusion barrier of Li on silicene is relatively low, which is insensitive to the concentration of adsorbed atoms.
Received: 12 November 2012      Published: 04 March 2013
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  61.46.-w (Structure of nanoscale materials)  
  82.56.Lz (Diffusion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/30/1/017103       OR      https://cpl.iphy.ac.cn/Y2013/V30/I1/017103
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
HUANG Juan
CHEN Hong-Jin
WU Mu-Sheng
LIU Gang
OUYANG Chu-Ying
XU Bo
[1] Dresselhaus M S and Dresselhaus G 2002 Adv. Phys. 51 1
[2] Medeiros P V C, de Brito Mota F, Mascarenhas A J S and de Castilho C M C 2010 Nanotechnology 21 115701
[3] Yang C K 2009 Appl. Phys. Lett. 94 163115
[4] Wang X 2009 Appl. Phys. Lett. 95 183103
[5] Persson K, Hinuma Y, Meng Y S, der Ven A V and Ceder G 2010 Phys. Rev. B 82 125416
[6] Allen M J, Tung V C and Kaner R B 2010 Chem. Rev. 110 132
[7] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[8] Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[9] Geim A K 2009 Science 324 1530
[10] Zhang Y, Tan J W, Stormer H L and Kim P 2005 Nature 438 201
[11] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firosv A A 2005 Nature 438 197
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firosv A A 2004 Science 306 666
[13] Chan K T, Neaton J B and Cohen M L 2008 Phys. Rev. B 77 235430
[14] Khantha M, Cordero N A, Molina L M, Alonso J A and Cirifalco L A 2004 Phys. Rev. B 70 125422
[15] Mapasha R and Chetty N 2010 Comput. Mater. Sci. 49 787
[16] Gerouki A, Goldner M A, Goldner R B, Haas T E, Liu T Y and Slaven S 1996 J. Electrochem. Soc. 143 L262
[17] Zheng J, Ren Z, Guo P, Fang L and Fan J 2011 Appl. Surf. Sci. 258 1651
[18] Pollak E, Geng B Jeon K J, Lucas I T, Richardson T J, Wang F and Kostechi R 2010 Nano Lett. 10 3386
[19] Garay-Tapia A M, Romero A H and Barone V 2012 J. Chem. Theor. Comput. 8 1064
[20] Fan X F, Zheng W T and Kuo J L 2012 ACS Appl. Mater. Interfaces 4 2432
[21] Lee E and Persson K A 2012 Nano Lett. 12 4624
[22] Doll K, Harrison N M and Saunders V R 1999 J. Phys.: Condens. Matter 11 5007
[23] Buzmán-Verri G G and Lew Yan Voon L C 2007 Phys. Rev. B 76 075131
[24] Lew Yan Voon L C, Sandberg E, Aga R S and Farajian A A 2010 Appl. Phys. Lett. 97 163114
[25] Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
[26] Cahangirov S, Topsakal M, Akturk E, Sahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[27] Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger R T and Ciraci S 2009 Phys. Rev. B 80 155453
[28] Bl?chl P E 1994 Phys. Rev. B 50 17953
[29] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[30] Lebegue S and Eriksson O 2009 Phys. Rev. B 79 115409
[31] Ni Z Y, Liu Q H, Tang K C, Zheng J X, Zhou J, Qin R, Gao Z X, Yu D P and Lu J 2012 Nano Lett. 12 113
[32] Lu D, Yang Y R, Xiao Y and Zhang X Y 2011 Chin. Phys. B 20 118101
Related articles from Frontiers Journals
[1] Weiqing Zhou and Shengjun Yuan. A Time-Dependent Random State Approach for Large-Scale Density Functional Calculations[J]. Chin. Phys. Lett., 2023, 40(2): 017103
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 017103
[3] Chuli Sun, Wei Guo, and Yugui Yao. Predicted Pressure-Induced High-Energy-Density Iron Pentazolate Salts[J]. Chin. Phys. Lett., 2022, 39(8): 017103
[4] Ying Zhou, Long Chen, Gang Wang, Yu-Xin Wang, Zhi-Chuan Wang, Cong-Cong Chai, Zhong-Nan Guo, Jiang-Ping Hu, and Xiao-Long Chen. A New Superconductor Parent Compound NaMn$_{6}$Bi$_{5}$ with Quasi-One-Dimensional Structure and Lower Antiferromagnetic-Like Transition Temperatures[J]. Chin. Phys. Lett., 2022, 39(4): 017103
[5] Xiaolan Yan, Pei Li, Su-Huai Wei, and Bing Huang. Universal Theory and Basic Rules of Strain-Dependent Doping Behaviors in Semiconductors[J]. Chin. Phys. Lett., 2021, 38(8): 017103
[6] Z. Z. Zhou, H. J. Liu, G. Y. Wang, R. Wang, and X. Y. Zhou. Dual Topological Features of Weyl Semimetallic Phases in Tetradymite BiSbTe$_{3}$[J]. Chin. Phys. Lett., 2021, 38(7): 017103
[7] Xian-Li Zhang, Jinbo Pan, Xin Jin, Yan-Fang Zhang, Jia-Tao Sun, Yu-Yang Zhang, and Shixuan Du. Database Construction for Two-Dimensional Material-Substrate Interfaces[J]. Chin. Phys. Lett., 2021, 38(6): 017103
[8] Xiu Yan, Wei-Li Zhen, Hui-Jie Hu, Li Pi, Chang-Jin Zhang, and Wen-Ka Zhu. High-Performance Visible Light Photodetector Based on BiSeI Single Crystal[J]. Chin. Phys. Lett., 2021, 38(6): 017103
[9] Hong-Bin Ren, Lei Wang, and Xi Dai. Machine Learning Kinetic Energy Functional for a One-Dimensional Periodic System[J]. Chin. Phys. Lett., 2021, 38(5): 017103
[10] Jiayu Ma, Junlin Kuang, Wenwen Cui, Ju Chen, Kun Gao, Jian Hao, Jingming Shi, and Yinwei Li. Metal-Element-Incorporation Induced Superconducting Hydrogen Clathrate Structure at High Pressure[J]. Chin. Phys. Lett., 2021, 38(2): 017103
[11] Xingyong Huang, Liujiang Zhou, Luo Yan, You Wang, Wei Zhang, Xiumin Xie, Qiang Xu, and Hai-Zhi Song. HfX$_{2}$ (X = Cl, Br, I) Monolayer and Type II Heterostructures with Promising Photovoltaic Characteristics[J]. Chin. Phys. Lett., 2020, 37(12): 017103
[12] Xihui Wang, Xiaole Qiu, Chang Sun, Xinyu Cao, Yujie Yuan, Kai Liu, and Xiao Zhang. Layered Transition Metal Electride Hf$_{2}$Se with Coexisting Two-Dimensional Anionic $d$-Electrons and Hf–Hf Metallic Bonds[J]. Chin. Phys. Lett., 2021, 38(1): 017103
[13] Aolin Li, Wenzhe Zhou, Jiangling Pan, Qinglin Xia, Mengqiu Long, and Fangping Ouyang. Coupling Stacking Orders with Interlayer Magnetism in Bilayer H-VSe$_{2}$[J]. Chin. Phys. Lett., 2020, 37(10): 017103
[14] Kaiyao Zhou, Jun Deng, Liwei Guo, and Jiangang Guo. Tunable Superconductivity in 2H-NbSe$_{2}$ via $\boldsymbol In~Situ$ Li Intercalation[J]. Chin. Phys. Lett., 2020, 37(9): 017103
[15] Xu-Han Shi, Bo Liu, Zhen Yao, Bing-Bing Liu. Pressure-Stabilized New Phase of CaN$_{4}$[J]. Chin. Phys. Lett., 2020, 37(4): 017103
Viewed
Full text


Abstract