CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Ultrafast and Broadband Terahertz Switching Based on Photo-Induced Phase Transition in Vanadium Dioxide Films |
CHEN Zhi1, WEN Qi-Ye2**, DONG Kai2, SUN Dan-Dan2, QIU Dong-Hong2, ZHANG Huai-Wu2 |
1National Key Laboratory of Science and Technology of Communication, University of Electronic Science and Technology of China, Chengdu 610054 2State Key Laboratory of Electronic Thin films and Integrated Devices, University of Electronic Science & Technology of China, Chengdu 610054
|
|
Cite this article: |
CHEN Zhi, WEN Qi-Ye, DONG Kai et al 2013 Chin. Phys. Lett. 30 017102 |
|
|
Abstract Single-phase VO2 thin films are sputtering deposited on BK7 substrates, and sharp insulator-to-metal phase transition is obtained with a resistivity change of four orders of magnitude. Terahertz (THz) pump-probe measurements reveal that by illuminating the films with a low pumping power of 143 μJ/cm2, VO2 films exhibit an ultrafast optical switching to THz transmission within 8 ps. Furthermore, the THz switching ratio reaches over 80% in a wide frequency range from 0.3 to 2.5 THz. All these outstanding features indicate a strong potential of VO2 films for broadband terahertz wave switching and modulation applications.
|
|
Received: 22 October 2012
Published: 04 March 2013
|
|
PACS: |
71.30.+h
|
(Metal-insulator transitions and other electronic transitions)
|
|
07.57.Pt
|
(Submillimeter wave, microwave and radiowave spectrometers; magnetic resonance spectrometers, auxiliary equipment, and techniques)
|
|
07.57.Pt
|
(Submillimeter wave, microwave and radiowave spectrometers; magnetic resonance spectrometers, auxiliary equipment, and techniques)
|
|
78.47.J-
|
(Ultrafast spectroscopy (<1 psec))
|
|
|
|
|
[1] Morin F J 1959 Phys. Rev. Lett. 3 34 [2] Zylbersztejn A and Mott N F 1975 Phys. Rev. B 11 4383 [3] Wang H C, Yi X J, Lai J J, Li Y 2005 Chin. Phys. Lett. 22 1746 [4] Lopez R, Boatner L A, Haynes T E, Jr. Haglund R F and Feldman L C 2004 Appl. Phys. Lett. 85 1410 [5] Kim H T, Lee Y W, Kim B J, Chae B G, Yun S J, Kang K Y, Han K J, Yee K J and Lim Y S 2006 Phys. Rev. Lett. 97 266401 [6] Cui J Z, Da D A and Jiang W S 1998 Acta Phys. Sin. 65 76 (in Chinese) [7] Yang Z, Ko C and Ramanathan S 2011 Annu. Rev. Mater. Res. 41 337 [8] Wen Q Y, Zhang H W, Yang Q H, Chen Z, Long Y, Jing Y L, Lin Y and Zhang P X 2012 J. Phys. D: Appl. Phys. 45 235106 [9] Chen H T, Padilla W J, Zide J M O, Gossard A C, Taylor A J and Averitt R D 2006 Nature 444 597 [10] Shi Q W, Huang W X, Zhang Y X, Yan J Z, Zhang Y B, Mao M, Zhang Y and Tu M J 2011 ACS Appl. Mater. 3 3523 [11] Wen Q Y, Zhang H W, Yang Q H, Xie Y S, Chen K and Liu Y L 2010 Appl. Phys. Lett. 97 021111 [12] Seo M, Kyoung J, Park H, Koo S, Kim H S, Bernien H, Kim B J, Choe J H, Ahn Y H, Kim H T, Park N, Park Q H, Ahn K and Kim D S 2010 Nano Lett. 10 2064 [13] Kyoung J, Seo M, Park H, Koo S, Kim H S, Park Y, Kim B J, Ahn K, Park N, H T Kim and Kim D S 2010 Opt. Express 18 16452 [14] Choi S B, Kyoung J S, Kim H S, Park H R, Park D J, Kim B J, Ahn Y H, Rotermund F, Kim H T, Ahn K J and Kim D S 2011 Appl. Phys. Lett. 98 071105 [15] Chen C H, Zhu Y H, Zhao Y, Lee J H; Wang H Y, Bernussi A, Holtz M and Fan Z Y 2010 Appl. Phys. Lett. 97 211905 [16] Mandal P, Speck A, Ko C and Ramanathan S 2011 Opt. Lett. 36 1927 [17] Ji Y D, Pan T S, Bi Z, Liang W Z, Zhan Y, Zeng H Z, Wen Q Y, Zhang H W, Jai Q X and Lin Y 2012 Appl. Phys. Lett. 101 071902 [18] Cho C R, Cho S I, Vadim S, Jung R and Yoo I 2006 Thin Solid Films 495 375 [19] Kubler C, Ehrke H, Huber R, Lopez R, Halabica A, Jr Haglund R F and Leitenstorfer A 2007 Phys. Rev. Lett. 99 116401 [20] Nakajima M, Takubo N, Hiroi Z, Ueda Y and Suemoto T 2008 Appl. Phys. Lett. 92 011907 [21] Yang T H, Aggarwal R, Gupta A, Zhou H, Narayan R J and Narayan J 2010 J. Appl. Phys. 107 053514 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|