Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 087501    DOI: 10.1088/0256-307X/29/8/087501
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Tailoring the Microstructure of NiZn Ferrite for Power Field Applications
TANG Xiao-Li, SU Hua**, ZHANG Huai-Wu
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054
Cite this article:   
Download: PDF(935KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The effects of grain size and magnetic domain state on the power loss (from low to high induction conditions) and permeability characteristics of NiZn ferrites are investigated. It is found that under relatively low induction conditions (Bm<50 mT), a NiZn ferrite with a dense and monodomain microstructure obtains the lowest power loss. However, a NiZn ferrite with a larger average grain size displays a lower power loss under high induction conditions, and the influence of domain state on power loss is inconspicuous. Extremely large grain size and closed pores also lead to a poor frequency stability of permeability. Thus, synthetically considering the power loss and permeability characteristics, a NiZn ferrite with an even and large average grain size also has few closed pores and is the best choice for use under high induction conditions.
Received: 02 May 2012      Published: 31 July 2012
PACS:  75.50.Dd (Nonmetallic ferromagnetic materials)  
  75.50.Gg (Ferrimagnetics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/087501       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/087501
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Lucas A, Lebourgeois R, Mazaleyrat F and Laboure E 2010 Appl. Phys. Lett. 97 182502
[2] Su H, Zhang H W, Tang X L, Jing Y L and Liu Y L 2007 J. Magn. Magn. Mater. 310 17
[3] Mirzaee O, Shafyei A, Golozar M A and Shokrollahi H 2008 J. Alloys. Compd. 461 312
[4] Nabiyouni G, Jafari Fesharaki M, Mozafari M and Amighian J 2010 Chin. Phys. Lett. 27 126401
[5] Zhou X, Hou Z L, Li F and Qi X 2010 Chin. Phys. Lett. 27 117501
[6] Matsuo Y, Inagki M, Tomozawa T and Nakao F 2001 IEEE Trans. Magn. 37 2359
[7] Sun K, Lan Z W, Yu Z, Li L Z, Huang J M and Zhao X N 2008 J. Phys. D 41 235002
[8] Su H, Zhang H W, Tang X L and Jing Y L 2008 J. Appl. Phys. 103 093903
[9] CheolGi K, Rao B P and Chong-Oh K 2007 Mater. Lett. 61 1601
[10] Van D Z P J, Van D V P J and Rekveldt M T 1996 Appl. Phys. Lett. 69 2927
[11] Van D Z P J, Kolenbrander M and Rekveldt M T 1998 J. Appl. Phys 83 6870
[12] Hachiya M, Iijima Y, Sato N, Kawano K, Mizuno Y and Kishi H 2008 10th International Conference on Ferrites p 224
[13] Han Z Q 2008 J. Magn. Mater. Devices 39 7 (in Chinese)
[14] Kondo K, Chiba T and Yamada S 2003 J. Magn. Magn. Mater. 254-255 541
[15] Kondo K, Chiba T, Yamada S and Otsuki E 2000 J. Appl. Phys. 87 6229
[16] Su H, Zhang H W, Tang X L and Shi Y 2008 J. Magn. Magn. Mater. 320 483
[17] Hanuszkiewicz J, Holz D, Eleftheriou E, Zaspalis V 2008 J. Appl. Phys. 103 103907
Related articles from Frontiers Journals
[1] Kangkang Li. Topological Magnons in Kitaev Magnets with Finite Dzyaloshinskii–Moriya Interaction at High Field[J]. Chin. Phys. Lett., 2023, 40(2): 087501
[2] Wanfei Shan, Jiangtao Du, and Weidong Luo. Magnetic Interactions and Band Gaps of the (CrO$_2$)$_2$/(MgH$_2$)$_n$ Superlattices[J]. Chin. Phys. Lett., 2022, 39(11): 087501
[3] Yu Guo , Nanshu Liu , Yanyan Zhao , Xue Jiang , Si Zhou, and Jijun Zhao . Enhanced Ferromagnetism of CrI$_{3}$ Bilayer by Self-Intercalation[J]. Chin. Phys. Lett., 2020, 37(10): 087501
[4] Kang-Kang Li, Jiang-Ping Hu. Weyl and Nodal Ring Magnons in Three-Dimensional Honeycomb Lattices[J]. Chin. Phys. Lett., 2017, 34(7): 087501
[5] WANG Ye-Shuai, XIA Nian-Ming, ZUO Hua-Kun, SHEN Yi-Ning, XIA Zheng-Cai. Switching Behavior Induced by Electric and Magnetic Fields in (La0.73Bi0.27)0.67Ca0.33MnO3[J]. Chin. Phys. Lett., 2014, 31(04): 087501
[6] SI Ping-Zhan, JIANG Wei, WANG Hai-Xia, ZHONG Min, GE Hong-Liang, CHOI Chul-Jin, LEE Jung-Goo. The High Nitrogen Pressure Synthesis of Manganese Nitride[J]. Chin. Phys. Lett., 2012, 29(12): 087501
[7] QI Xin, ZHOU Xin, SHU Di, ZHAO Jing-Jing, WANG Wei, CHEN Juan** . Effect of Porous Structure on the Magnetic Properties of NixMgyZn1−x-yFe2O4 Magnetic Materials[J]. Chin. Phys. Lett., 2011, 28(10): 087501
[8] ZHOU Xin, HOU Zhi-Ling, LI Feng, QI Xin** . Magnetic Properties of Ni-Zn Ferrite Prepared with the Layered Precursor Method[J]. Chin. Phys. Lett., 2010, 27(11): 087501
[9] SU Hua, ZHANG Huai-Wu, TANG Xiao-Li, JING Yu-Lan, ZHONG Zhi-Yong. Influences of Bi2O3/V2O5 Additives on the Microstructure and Magnetic Properties of Lithium Ferrite[J]. Chin. Phys. Lett., 2009, 26(5): 087501
[10] WANG Xiao-Xiong, LI Hong-Nian, XU Ya-Bo, WANG, ZHANG Wen-Hua, XU Fa-Qiang. Electronic Structure of Eu6C60[J]. Chin. Phys. Lett., 2009, 26(1): 087501
[11] SONG Yuan-Qiang, ZHANG Huai-Wu, WEN Qi-Ye, ZHU Hao, John Q. Xiao. Additional Y3+ Doping Effect on Ferromagnetism of Ce0.97Co0.03O2-δ Compounds[J]. Chin. Phys. Lett., 2008, 25(3): 087501
[12] TENG Xiao-Yun, YU Wei, YANG Li-Hua, HAO Qiu-Yan, ZHANG Li, XU He-Ju, LIU Cai-Chi, FU Guang-Sheng. Room-Temperature Ferromagnetism in Zn 1-x MnxO Thin Films Deposited by Pulsed Laser Deposition[J]. Chin. Phys. Lett., 2007, 24(4): 087501
[13] ZHANG Ning, BAO Jian-Chun, LI Gang, GENG Tao, CHEN Ji-Kang. Intergranular Tunnelling and Field-Induced Percolation Fluctuation of Granular Composites (La1-zAgzMnO3)/(MnO2/Mn2O3)[J]. Chin. Phys. Lett., 2005, 22(11): 087501
[14] DAI Yao-Dong, HAN Wei, ZHENG Likun, XIA Yuan-Fu. Magnetic Behaviour of Iron Oxychloride and Its Organometallic Intercalation Compounds Studied by Möossbauer Spectroscopy[J]. Chin. Phys. Lett., 2005, 22(8): 087501
[15] WU Jian, ZHANG Shi-Yuan, HU Xiu-Kun. Spin-Polarized Tunnelling Magnetoresistance Effects in La0.833K0.167MnO3/SrTiO3 Polycrystalline Perovskite Manganites[J]. Chin. Phys. Lett., 2005, 22(6): 087501
Viewed
Full text


Abstract