FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
Single-Fundamental-Mode 850 nm Surface Relief VCSEL |
WEI Si-Min**, XU Chen, DENG Jun, ZHU Yan-Xu, MAO Ming-Ming, XIE Yi-Yang, XU Kun, CAO Tian, LIU Jiu-Cheng |
Key Laboratory of Opto-electronics Technology (Ministry of Education), Beijing University of Technology, Beijing 100124 |
|
Cite this article: |
|
|
|
Abstract The performance of the oxide-confined surface-relief (SR) structure vertical-cavity surface-emitting laser (VCSEL) is simulated and analyzed by using the three-dimensional finite-difference time-domain (FDTD) method. The impacts of the device structure parameters on the far-field characteristics are researched. A single-fundamental-mode SR VCSEL with an oxide-aperture of 15 μm is designed and produced. The single-mode power of the VCSEL is 5 mW, the threshold current is 2.5 mA, far-field divergent angles range from 7.8° to 10.8° and the side-mode suppression ratio is over 30 dB. The optical and electrical properties of the device are in agreement with the results of FDTD simulation, which shows that the SR technology can effectively suppress the higher-order-mode lasing, and make the SR VCSEL work in a single mode under a larger oxide aperture.
|
|
Received: 17 April 2012
Published: 31 July 2012
|
|
PACS: |
42.55.Px
|
(Semiconductor lasers; laser diodes)
|
|
42.62.Fi
|
(Laser spectroscopy)
|
|
|
|
|
[1] Haglund A, Gustavsson J S, Vukusic J, Modh P and Larsson A 2004 IEEE Photon. Technol. Lett. 16 368 [2] Martinsson H, Vukusic J A, Ghisoni M, Grabherr M, Michalzik R, Jager R, Ebeling K J and Larsson A 1999 Photon. Technol. Lett. 11 1536 [3] Xie Y Y, Kan Q, Xu C, Zhu Y X, Wang C X and Chen H D 2012 IEEE Photon. Technol. Lett. 24 464 [4] Xie Y Y, Xu C, Kan Q, Wang C X, Liu Y M, Wang, B Q, Chen H D and Shen G D 2010 Chin. Phys. Lett. 27 024206 [5] Furukawa A, Hoshi M, Sasaki S, Matsuzono A, Moritoh K and Baba T 2005 Proc. SPIE 5722 183 [6] Zhou D L, Mawst L J 2002 IEEE J. Quantum Electron. 38 1599 [7] Unold H J, Mahmoud S W Z, Jager R et al 2000 IEEE Photon. Technol. Lett. 12 939 [8] Unold H J, Grabherr M, Eberhard F, Kicherer M, Riedl M C and Ebeling K J 1999 Electron. Lett. 35 1340 [9] Wei S M, Xu C, Mao M, Xie Y Y and Cao T 2012 Proc. SPIE 8333 83330N [10] Zhou K, Xu C, Xie Y Y, Zhao Z B, Liu F and Shen G D 2011 Chin. Phys. Lett. 28 084209 [11] Liu F, Xu C, Xie Y, Zhao Z B, Zhou K, Wang B Q, Liu Y M and Shen G D 2011 J. Phys.: Conf. Ser. 276 012071 [12] Wang X D, Wu X M, Wang Q, Cao Y L, He G R and Tan M Q 2006 Chin. J. Semiconduct. 27 2011 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|