Chin. Phys. Lett.  2012, Vol. 29 Issue (8): 080402    DOI: 10.1088/0256-307X/29/8/080402
GENERAL |
Conserved Quantities in f(R) Gravity via Noether Symmetry
M. Farasat Shamir**, Adil Jhangeer, Akhlaq Ahmad Bhatti
Department of Sciences & Humanities, National University of Computer & Emerging Sciences, Lahore Campus, Pakistan
Cite this article:   
Download: PDF(465KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract We investigate f(R) gravity using the Noether symmetry approach. For this purpose, we consider Friedmann Robertson–Walker (FRW) universe and spherically symmetric spacetimes. The Noether symmetry generators are evaluated for some specific choice of f(R) models in the presence of the gauge term. Further, we calculate the corresponding conserved quantities in each case. Moreover, the importance and stability criteria of these models are discussed.
Received: 01 March 2012      Published: 31 July 2012
PACS:  04.50.Kd (Modified theories of gravity)  
  98.80.-k (Cosmology)  
  02.20.Sv (Lie algebras of Lie groups)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/8/080402       OR      https://cpl.iphy.ac.cn/Y2012/V29/I8/080402
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
[1] Seprgel D N et al 2003 Astrophys. J. Suppl. Ser. 148 175
Bennett C L et al 2003 Astrophys. J. Suppl. Ser. 148 1
[2] Perlmutter S et al 1999 Astrophys. J. 517 565
Riess A G et al 1998 Astron. J. 116 1009
Astier P et al 2006 Astron. Astrophys. 447 31
[3] Allen S W et al 2004 Mon. Not. R. Astron. Soc. 353 457
[4] Tegmark M et al 2004 Phys. Rev. D 69 103501
Abazajian K et al 2005 Astron. J. 129 1755
[5] Nojiri S and Odintsov S D 2003 Phys. Lett. B 576 5
Guenther U, Zhuk A, Bezerra V and Romero C 2005 Class. Quant. Grav 22 3135
[6] Carroll S M, Duvvuri V, Trodden M and Turner M 2004 Phys. Rev. D 70 043528
Capozziello S, Carloni S and Troisi A 2003 Int. J. Mod. Phys. D 12 1969
[7] Chiba T 2003 Phys. Lett. B 575 1
Soussa M E and Woodard R P 2004 Gen. Rel. Grav. 36 855
[8] Nojiri S and Odintsov S D 2003 Phys. Rev. D 68 123512
Abdalla E, Nojiri S and Odintsov S D 2005 Class. Quant. Grav. 22 L35
[9] Nojiri S and Odintsov S D 2007 Int. J. Geom. Meth. Mod. Phys. 4 115
[10] Felice A D and Tsujikawa S 2010 Living Rev. Rel. 13 3
[11] Sotiriou T P and Faraoni V 2010 Rev. Mod. Phys. 82 451
[12] Hendi S H and Momeni D 2011 Eur. Phys. J. C 71 1823
[13] Moon T and Myung Y S 2011 Phys. Rev. D 84 104029
[14] Guarnizo A, Castaneda L and Tejeiro J M 2011 Gen. Relativ. Grav. 43 2713
[15] Upadhye A and Hu W 2009 Phys. Rev. D 80 064002
[16] Huang B, Li S and Ma Y 2010 Phys. Rev. D 81 064003
[17] Starobinsky A A 2007 JETP Lett. 86 157
[18] Multam?ki T and Vilja I 2006 Phys. Rev. D 74 064022
[19] Multam?ki T and Vilja I 2007 Phys. Rev. D 76 064021
[20] Shojai A and Shojai F 2012 Gen. Relativ. Gravit. 44 211
[21] Azadi A, Momeni D and Nouri-Zonoz M 2008 Phys. Lett. B 670 210
[22] Sharif M and Shamir M F 2010 Mod. Phys. Lett. A 25 1281
[23] Sharif M and Shamir M F 2009 Class. Quantum Grav. 26 235020
[24] Sharif M and Shamir M F 2010 Gen. Relativ. Grav. 42 2643
[25] Bessel-Hagen E 1921 Math. Ann. 84 258
[26] Noether E 1918 Math phys. Klasse 235
[27] Kara A H and Mahomed F M 2006 Nonl. Dyn. 45 367
[28] Steudel H 1962 Z. Naturforsch. 17A 129
[29] Wolf T 2002 Eur. J. Appl. Math. 13 129
[30] Wolf T, Brand A and Mohammadzadeh M 1999 J. Symb. Comput. 27 221
[31] G?ktas ü and Hereman W 1997 J. Symb. Comput. 24 591
[32] Hereman W, Adams P J, Eklund H L, Hickman M S and Herbst B M2009 Advances of Nonlinear Waves and Symbolic Computation (New York: Nova Science)
[33] Hereman W, Colagrosso M, Sayers R, Ringler A, Deconinck B and NivalaM 2005 Differential Equations with Symbolic Computation (Basel: Birkh?user)
[34] Hereman W 2006 Int. J. Quant. Chem. 106 278
[35] Cheviakov A F 2007 Comput. Phys. Commun. 176 48
[36] Hanc J, Tuleja S and Hancova M 2004 Am. J. Phys. 72 428
[37] Capozziello S, Stabile A and Troisi A 2007 Class. Quantum Grav. 24 2153
[38] Kucukakca Y and Camci U 2012 Astrophys. Space Sci. 338 211
[39] Jamil M, Mahomed F M and Momeni D 2011 Phys. Lett. B 702 315
[40] Hussain I, Jamil M and Mahomed F M 2012 Astrophys. Space Sci. 337 373
[41] Sharif M and Waheed S 2011 Phys. Scr. 83 015014
[42] Sharif M and Waheed S 2010 Can. J. Phys. 88 833
[43] Shamir M F, Jhangeer A and Bhatti A A 2012 Brazilian J. Phys. (submitted)
[44] Capozziello S 2002 Int. J. Mod. Phys. D 11 483
[45] Olver P J 1993 Applications of Lie Groups to Differential Equations (New York: Springer-Verlag)
[46] Sebastiani L and Zerbini S 2010 arXiv:1012.5230v3
[47] Vollick D N 2003 Phys. Rev. D 68 063510
Related articles from Frontiers Journals
[1] P. H. R. S. Moraes, Pradyumn Kumar Sahoo, Shreyas Sunil Kulkarni, Shivaank Agarwal. An Exponential Shape Function for Wormholes in Modified Gravity[J]. Chin. Phys. Lett., 2019, 36(12): 080402
[2] Chi-Kun Ding. Gravitational Perturbations in Einstein Aether Black Hole Spacetime[J]. Chin. Phys. Lett., 2018, 35(10): 080402
[3] Safiqul Islam, Shantanu Basu. Magnetic Field of a Compact Spherical Star under f(R,T) Gravity[J]. Chin. Phys. Lett., 2018, 35(9): 080402
[4] Ming Zhang, Rui-Hong Yue. Phase Transition and Quasinormal Modes for Spherical Black Holes in 5D Gauss–Bonnet Gravity[J]. Chin. Phys. Lett., 2018, 35(4): 080402
[5] ZHANG Ming, YUE Rui-Hong, YANG Zhan-Ying. Critical Behavior of Black Holes in an Einstein–Maxwell Gravity with a Conformal Anomaly[J]. Chin. Phys. Lett., 2015, 32(02): 080402
[6] Gamal G. L. Nashed*. Spherically Symmetric Solutions on a Non-Trivial Frame in f(T) Theories of Gravity[J]. Chin. Phys. Lett., 2012, 29(5): 080402
[7] ZHANG Tao, WU Pu-Xun, YU Hong-Wei, ** . Gödel-Type Universes in f(R) Gravity with an Arbitrary Coupling between Matter and Geometry[J]. Chin. Phys. Lett., 2011, 28(12): 080402
[8] AO Xi-Chen**, LI Xin-Zhou, XI Ping . Cosmological Dynamics of de Sitter Gravity[J]. Chin. Phys. Lett., 2011, 28(4): 080402
[9] Arbab I. Arbab. Viscous Dark Energy Models with Variable G and Λ[J]. Chin. Phys. Lett., 2008, 25(10): 080402
[10] ZHOU Xiao-Ying, HE Jian-Hua. Gravitational Waves in f(R) Gravity[J]. Chin. Phys. Lett., 2014, 31(09): 080402
Viewed
Full text


Abstract