Chin. Phys. Lett.  2012, Vol. 29 Issue (7): 074213    DOI: 10.1088/0256-307X/29/7/074213
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Evolution of Slow Dual Steady-State Optical Solitons in a Cold Three-State Medium
SUN Jian-Qiang1**, LI Hao-Chen1, GU Xiao-Yan2
1Department of Mathematics, College of Information Science and Technology, Hainan University, Haikou 570228
2 Department of Physics, East China University of Science and Technology, Shanghai 200237
Cite this article:   
SUN Jian-Qiang, LI Hao-Chen, GU Xiao-Yan 2012 Chin. Phys. Lett. 29 074213
Download: PDF(1640KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The generalized nonlinear Schrödinger equation, which describes the evolution of dual steady-state optical solitons in a cold three-state medium, is written as the Hamiltonian symplectic structure. The symplectic method is applied to investigate evolution of dual steady-state optical solitons. By adjusting the initial pulses, the saturation parameter variables and the distances of optical solitons, the different behaviors of dual steady-state optical solitons are analyzed.

Received: 05 April 2012      Published: 29 July 2012
PACS:  42.65.-k (Nonlinear optics)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  02.60.Cb (Numerical simulation; solution of equations)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/7/074213       OR      https://cpl.iphy.ac.cn/Y2012/V29/I7/074213
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
SUN Jian-Qiang
LI Hao-Chen
GU Xiao-Yan
[1] Agrawal G P 2001 Nonlinear Fiber Optics (New York: Academic)
[2] Kaplan E 1985 Phys. Rev. Lett. 55 1291
[3] Gatz S and Herrmann J 1991 J. Opt. Soc. Am. B 8 2296
[4] Li Y and Xiao M 1995 Phys. Rev. A 51 R2703
[5] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[6] Wu Y and Deng L 2004 Opt. Lett. 29 2064
[7] Wu Y and Deng L 2004 Phys. Rev. Lett. 93 143904
[8] Wu Y 2005 Phys. Rev. A 71 053820
[9] Yang X X and Wu Y 2006 Commun. Theor. Phys. 45 335
[10] Xie X T, Li W B and Yang W X 2006 J. Phys. B 39 401
[11] Xie X T, Hua W, Li W B, Luo J M and Yang X X 2006 Phys. Lett. A 352 73
[12] Xie X T 2007 PhD Dissertation (Wuhan: Huazhong University of Science and Technology) (in Chinese)
[13] Huang G, Deng L and Payne M G 2005 Phys. Rev. E 72 016617
[14] Wu Y and Yang X 2007 Appl. Phys. Lett. 91 094104
[15] Wu Y 2008 J. Appl. Phys. 103 104903
[16] Li H J, Dong L W, Hang C and Huang G X 2011 Phys. Rev. A 83 023816
[17] Feng K and Qin M Z 2002 Symplectic Geometric Algorithm for Hamiltonian System (Hangzhou: Zhejiang Science and Technology Press)
[18] Qin M Z and Zhu W J 1993 Comput. Math. Appl. 26 1
[19] Hong J L and Kong L H 2010 Commun. Comput. Phys. 7 613
[20] Sun J Q and Qin M Z 2003 Comput. Phys. Commun. 155 221
Related articles from Frontiers Journals
[1] Rui-Kai Pan, Lei Tang, Keyu Xia, and Franco Nori. Dynamic Nonreciprocity with a Kerr Nonlinear Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 074213
[2] Ya-Jing Jiang, Xing-Dong Zhao, Shi-Qiang Xia, Chun-Jie Yang, Wu-Ming Liu, and Zun-Lue Zhu. Nonlinear Optomechanically Induced Transparency in a Spinning Kerr Resonator[J]. Chin. Phys. Lett., 2022, 39(12): 074213
[3] Qifang Peng, Zhaoyang Peng, Yue Lang, Yalei Zhu, Dongwen Zhang, Zhihui Lü, and Zengxiu Zhao. Decoherence Effects of Terahertz Generation in Solids under Two-Color Femtosecond Laser Fields[J]. Chin. Phys. Lett., 2022, 39(5): 074213
[4] Hui Li, Haigang Liu, Yangfeifei Yang, Ruifeng Lu, and Xianfeng Chen. Nonlinear Generation of Perfect Vector Beams in Ultraviolet Wavebands[J]. Chin. Phys. Lett., 2022, 39(3): 074213
[5] Hai-Zhong Wu, Quan Guo, Yan-Yun Tu, Zhi-Hui Lyu, Xiao-Wei Wang, Yong-Qiang Li, Zhao-Yan Zhou, Dong-Wen Zhang, Zeng-Xiu Zhao, and Jian-Min Yuan. Polarity Reversal of Terahertz Electric Field from Heavily p-Doped Silicon Surfaces[J]. Chin. Phys. Lett., 2021, 38(7): 074213
[6] Xian-Zhi Wang, Zhao-Hua Wang, Yuan-Yuan Wang, Xu Zhang, Jia-Jun Song, and Zhi-Yi Wei. A Self-Diffraction Temporal Filter for Contrast Enhancement in Femtosecond Ultra-High Intensity Laser[J]. Chin. Phys. Lett., 2021, 38(7): 074213
[7] Jian-Hui Ma, Hui-Qin Hu, Yu Chen, Guang-Jian Xu, Hai-Feng Pan, E Wu. High-Efficiency Broadband Near-Infrared Single-Photon Frequency Upconversion and Detection[J]. Chin. Phys. Lett., 2020, 37(3): 074213
[8] Li-Jiao He, Ke Liu, Nan Zong, Zhao Liu, Zhi-Min Wang, Yong Bo, Xiao-Jun Wang, Qin-Jun Peng, Da-Fu Cui, Zu-Yan Xu. A High Conversion Efficiency Q-Switched Intracavity Nd:YVO$_{4}$/KTA Optical Parametric Oscillator under Direct Diode Pumping at 880nm[J]. Chin. Phys. Lett., 2019, 36(4): 074213
[9] Rui Wang, Yan-Ling Wu, B. H. Yu, Li-Li Hu, C. Z. Gu, J. J. Li, Jimin Zhao. Absorptive Fabry–Pérot Interference in a Metallic Nanostructure[J]. Chin. Phys. Lett., 2019, 36(2): 074213
[10] Xing Wei, ZhenDa Xie, Yan-Xiao Gong, Xinjie Lv, Gang Zhao, ShiNing Zhu. Localization and Steering of Light in One-Dimensional Parity-Time Symmetric Photonic Lattices[J]. Chin. Phys. Lett., 2019, 36(1): 074213
[11] Wei Wang, Fan-Chao Meng, Yuan Qing, Shi Qiu, Ting-Ting Dong, Wei-Zhen Zhu, Yu-Ting Zuo, Ying Han, Chao Wang, Yue-Feng Qi, Lan-Tian Hou. Tunable Supercontinuum Generated in a Yb$^{3+}$-Doped Microstructure Fiber Pumped by Ti:Sapphire Femtosecond Laser[J]. Chin. Phys. Lett., 2018, 35(10): 074213
[12] Kang-Bo Tan, Hong-Min Lu, Qiao Guan, Guang-Shuo Zhang, Chong-Chong Chen. Variational Analysis of High-Frequency Effect on Moving Electromagnetic Interface[J]. Chin. Phys. Lett., 2018, 35(7): 074213
[13] J. Shiri, F. Shahi, M. R. Mehmannavaz, L. Shahrassai. Phase Control of Transient Optical Properties of Double Coupled Quantum-Dot Nanostructure via Gaussian Laser Beams[J]. Chin. Phys. Lett., 2018, 35(2): 074213
[14] Wen-Hao Xu, Zhan-Ying Yang, Chong Liu, Wen-Li Yang. Localized Optical Waves in Defocusing Regime of Negative-Index Materials[J]. Chin. Phys. Lett., 2017, 34(10): 074213
[15] Li-Bo Fang, Wei Pan, Si-Hua Zhong, Wen-Zhong Shen. Nonresonant and Resonant Nonlinear Absorption of CdSe-Based Nanoplatelets[J]. Chin. Phys. Lett., 2017, 34(9): 074213
Viewed
Full text


Abstract