|
Label-Free and Real-Time Detection of Antigen-Antibody Capture Processes Using the Oblique-Incidence Reflectivity Difference Technique
HE Li-Ping, DAI Jun, SUN Yue, WANG Jing-Yi, LÜ Hui-Bin, WANG Shu-Fang, JIN Kui-Juan, ZHOU Yue-Liang, YANG Guo-Zhen
Chin. Phys. Lett. 2012, 29 (7):
070702
.
DOI: 10.1088/0256-307X/29/7/070702
We successfully label-free and real-time detect the capture processes of human immunoglobulin G (IgG)/goat anti-human IgG and mouse IgG/goat anti-mouse IgG antigen-antibody pairs with different concentrations using the oblique-incidence reflectivity difference (OIRD) method, and obtain the interaction kinetics curves and the interaction times. The experimental results prove that the OIRD method is a promising technique for label-free and real-time detection of the biomolecular interaction processes and achieving the quantitative information of interaction kinetics.
|
|
Lateral Resolution and Signal to Noise Ratio in Electrostatic Force Detection Based on Scanning Probe Microscopy
ZHANG Dong-Dong, WANG Xiao-Wei, WANG Rui, WANG Sheng-Nan, CHENG Zhi-Hai, QIU Xiao-Hui
Chin. Phys. Lett. 2012, 29 (7):
070703
.
DOI: 10.1088/0256-307X/29/7/070703
The lateral resolution (LR) and signal-to-noise ratio (SNR) are the essential factors in the applications of scanning probe microscopy in quantitative measurement of surface charge distribution, potential profile, and dielectric properties. We use a model system to comprise Au nanoparticles (NPs) embedded in a polystyrene (PS) matrix to study the effects of various experimental parameters, such as modulation bias voltage, tip-sample distance, and actual tip shape, on the electrostatic interactions between the tips and samples. The results show that LR and SNR decrease when the tip-sample distance increases, while SNR increases with tip modulation voltage. LR is less sensitive to tip modulation voltage, but shows complex dependence on the sample geometric structure. In combination with a numerical simulation based on the integral capacitance model, the electrostatic force interaction between tip and sample was quantitatively analyzed.
|
|
Methodological Study on Change in Half Life of 210Po Embedded in a Metallic Medium at Ultra-Low Temperature
DONG Ke-Jun, JIANG Shan, HE Ming, HE Xian-Wen, RUAN Xiang-Dong, GUAN Yong-Jing, LIN De-Yu, YUAN Jian, WU Shao-Yong
Chin. Phys. Lett. 2012, 29 (7):
072301
.
DOI: 10.1088/0256-307X/29/7/072301
It has been claimed that the half-life of radioactive nuclides embedded in metals may be significantly affected by the screening of quasi-free electrons provided by the metals, especially at the cryogenic temperature. We determine the α-decay half-life values of 210Po in high purity metallic bismuth at 4.2 K and 293 K. The results show that the α-decay half-life of 210Po at T=4.2 K is about (24 ±8)% shorter than that at room temperature.
|
|
Detached Electron Spectra from H− near a Partially Reflecting Spherical Surface
Muhammad Haneef, Saleh Mohammad, Jehan Akbar, Suneela Arif, Muhammad Zahir, Humayun Khan
Chin. Phys. Lett. 2012, 29 (7):
073201
.
DOI: 10.1088/0256-307X/29/7/073201
The photodetachment of a hydrogen negative ion (H−) near a partially reflecting surface with a spherical shape is investigated by a theoretical imaging method. Analytical expressions for the detached electron flux and total photodetachment cross section are derived. It is found that two parameters, i.e. curvature radius rc and reflection parameter K, control the photodetachment spectra. Furthermore, these parameters can be used for the classification, identification and revelation of minor details like curvature of different types of surfaces.
|
|
Comparison of Small-Scale Actively and Passively Q-Switched Eye-Safe Intracavity Optical Parametric Oscillators at 1.57 µm
MIAO Jie-Guang, PAN Yu-Zhai, QU Shi-Liang
Chin. Phys. Lett. 2012, 29 (7):
074201
.
DOI: 10.1088/0256-307X/29/7/074201
The first experimental comparison between the actively and passively Q-switched intracavity optical parametric oscillators (IOPOs) at 1.57 µm driven by a small-scale diode-pumped Nd:YVO4 laser are thoroughly presented. It is found that the performances of the two types of IOPOs are complementary. The actively Q-switched IOPO features a shorter pulse duration, a higher peak power, and a superior power and pulse stability. However, in terms of compactness, operation threshold and conversion efficiency, passively Q-switched IOPOs are more attractive. It is further indicated that the passively Q-switched IOPO at 1.57 µm is a promising and cost-effective eye-safe laser source, especially at the low and moderate output levels. In addition, instructional improvement measures for the two types of IOPOs are also summarized.
|
|
Controllable Dual-Wavelength Fiber Laser
LI Zhen, ZHOU Jun, HE Bing, LIU Hou-Kang, LIU Chi, WEI Yun-Rong, DONG Jing-Xing, LOU Qi-Hong
Chin. Phys. Lett. 2012, 29 (7):
074203
.
DOI: 10.1088/0256-307X/29/7/074203
We demonstrate a controllable dual-wavelength fiber laser which contains a master laser and a slave laser. The master laser is a kind of ring cavity laser which can be injected into by the slave laser. The output laser wavelength is controlled by injected power of the slave laser; both single- and dual-wavelength operation can be achieved. Under free running, the master laser generates 1064 nm laser output. Here the slave laser is a 1072 nm fiber laser. The 1064 nm and 1072 nm laser coexist in output spectrum for relatively low injected power. Dual-wavelength and power-ratio-tunable operation can be achieved. If the injected power of the slave laser is high enough, the 1064 nm laser is extinguished automatically and there is only 1072 nm laser output.
|
|
Numerical Study of Plasmonic Modes in Hexagonally Arranged Metal Nanowire Array
YAN Hao-Zhe, PENG Jing-Gang, LI Jin-Yan, YANG Lü-Yun
Chin. Phys. Lett. 2012, 29 (7):
074204
.
DOI: 10.1088/0256-307X/29/7/074204
A plasmonic waveguide containing hexagonally arranged parallel metallic nanowires with hexagonal cross sections embedded in a silica fiber is proposed and discussed. According to simulations of surface plasmon polariton eigenmodes at varying geometrical transverse parameters, we obtain comprehensive mode characteristics, including field mode distribution, effective refractive index, propagation length, and lateral mode radius, thus allowing us to investigate the precise trade-off between propagation length and confinement, which is very important in designing plasmonic waveguides of different applications. This waveguide is also proved to be robust against fabrication imperfections, which makes its manufacture and practical applicability feasible.
|
|
Dual-Peak Bragg Gratings Inscribed in an All-Solid Photonic Bandgap Fiber for Sensing Applications
ZHANG Ji-Huang, LIU Ning-Liang, WANG Ying, JI Ling-Ling, LU Pei-Xiang
Chin. Phys. Lett. 2012, 29 (7):
074205
.
DOI: 10.1088/0256-307X/29/7/074205
Bragg gratings are inscribed in an all-solid photonic bandgap fiber by use of femtosecond laser irradiation. Dual-peak structure is observed in the transmission spectrum of the induced grating, which is formed by the coupling between the forward-propagating fundamental core mode and the backward-propagating core mode or supermode. Sensing characteristics of the device are investigated experimentally by employing strain and temperature tests, and similar behavior is obtained for both resonant peaks. The strain and temperature sensitivities are 0.968pm/μϵ and 12.01pm/°C, and 0.954pm/μϵ and 12.04pm/°C, for the two peaks, respectively. This device would find potential applications in real optical fiber sensing without extra reference gratings.
|
|
Application of Optical Kerr Gate with SrTiO3 Crystal in Acquisition of Gated Spectra from a Supercontinuum
YAN Li-He, JIA Sen, SI Jin-Hai, MATSUO Shigeki, CHEN Feng, HOU Xun
Chin. Phys. Lett. 2012, 29 (7):
074207
.
DOI: 10.1088/0256-307X/29/7/074207
We investigate the optical Kerr effect of SrTiO3 (STO) crystal, of which the nonlinear response time was measured to be less than 200 fs, while the nonlinear refractive index is estimated to be 2.16×10-15 cm2/W. Using the optical Kerr gate (OKG) technique with an STO crystal as the Kerr medium, we obtain narrow-bandwidth and symmetric gated spectra from a supercontinuum generated in distilled water by a femtosecond laser. The experimental results show superiority compared with the gated spectra obtained using OKG with CS2 as the Kerr medium, demonstrating that STO crystal is a promising OKG medium.
|
|
Resolution for Forward and Phase-Conjugate Degenerate Four-Wave Mixing in Hot Atomic Media
CHENG Xue-Mei, CHEN Hao-Wei, WANG Jian, MIAO Yi-Zhu, YIN Xun-Li, REN Zhao-Yu, BAI Jin-Tao
Chin. Phys. Lett. 2012, 29 (7):
074212
.
DOI: 10.1088/0256-307X/29/7/074212
Resolutions of degenerate four-wave mixing with forward and phase-conjugate configurations (FDFWM and PCDFWM) are investigated and compared theoretically and experimentally in hot rubidium (Rb) atomic vapor. The theoretical simulations indicate that PCDFWM is of much higher resolution than FDFWM. The resolution of PCDFWM is less dependent on Doppler broadening. The experimental results are in good agreement with the theoretical expectation. PCDFWM can resolve the hyperfine transitions and crossover resonances of 87Rb which cannot be achieved by FDFWM. Additionally, with sample temperature increasing, the linewidth of FDFWM spectrum obviously broadens. In comparison, no obvious broadening can be observed in the PCDFWM spectrum.
|
|
Nonlocal Imaging by Conditional Averaging of Random Reference Measurements
LUO Kai-Hong, HUANG Bo-Qiang, ZHENG Wei-Mou, WU Ling-An
Chin. Phys. Lett. 2012, 29 (7):
074216
.
DOI: 10.1088/0256-307X/29/7/074216
We report the nonlocal imaging of an object by conditional averaging of the random exposure frames of a reference detector, which only sees the freely propagating field from a thermal light source. A bucket detector, synchronized with the reference detector, records the intensity fluctuations of an identical beam passing through the object mask. These fluctuations are sorted according to their values relative to the mean, then the reference data in the corresponding time-bins for a given fluctuation range are averaged, to produce either positive or negative images. Since no correlation calculations are involved, this correspondence imaging technique challenges our former interpretations of "ghost" imaging. Compared with conventional correlation imaging or compressed sensing schemes, both the number of exposures and computation time are greatly reduced, while the visibility is much improved. A simple statistical model is presented to explain the phenomenon.
|
|
Deactivation of Enterococcus Faecalis Bacteria by an Atmospheric Cold Plasma Brush
CHEN Wei, HUANG Jun, DU Ning, LIU Xiao-Di, LV Guo-Hua, WANG Xing-Quan, ZHANG Guo-Ping, GUO Li-Hong, YANG Si-Ze
Chin. Phys. Lett. 2012, 29 (7):
075203
.
DOI: 10.1088/0256-307X/29/7/075203
An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed and used to treat enterococcus faecalis bacteria. The results show that the efficiency of the inactivation process by helium plasma is dependent on applied power and exposure time. After plasma treatments, the cell structure and morphology changes can be observed by scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play a significant role in the sterilization process.
|
|
Unsteady Cavitating Flow around a Hydrofoil Simulated Using the Partially-Averaged Navier–Stokes Model
JI Bin, LUO Xian-Wu, WU Yu-Lin, XU Hong-Yuan
Chin. Phys. Lett. 2012, 29 (7):
076401
.
DOI: 10.1088/0256-307X/29/7/076401
Numerical simulations of unsteady cavitating flow around a NACA66-mod hydrofoil were performed using the partially-averaged Navier–Stokes method with different values of the resolution control parameters (fk=1.0–0.2, fϵ=1). With decreasing fk, the predicted cavitating flow becomes unsteady as the time-averaged turbulent viscosity at the rear part of the attached cavity is gradually reduced. For fk=0.9 and 0.8, the cavity becomes unstable and its length dramatically expands and shrinks, but the calculation fails to predict the vapor cloud shedding behavior observed experimentally. With smaller fk less than 0.7, the cloud shedding behavior is simulated numerically and the predicted cavity shedding frequency increases. With fk=0.2, the whole cavitating flow evolution can be reasonably reproduced including the cavity growth/destabilization observed previously. The re-entrant flow along the suction surface of the hydrofoil is the main trigger to cause the vapor cloud shedding. The wall pressure along the hydrofoil surface oscillates greatly due to the dynamic cavity shedding. Comparing the simulations and experiments, it is confirmed that for the PANS method, resolution control parameters of fk=0.2 and fϵ=1 are recommended for numerical simulations of unsteady cavitating flows. Thus, the present study shows that the PANS method is an effective approach for predicting unsteady cavitating flow over hydrofoils.
|
|
Growth, Mechanical and Thermal Properties of Bi4Si3O12 Single Crystals
SHEN Hui, XU Jia-Yue, PING Wei-Jie, HE Qing-Bo, ZHANG Yan, JIN Min, JIANG Guo-Jian
Chin. Phys. Lett. 2012, 29 (7):
076501
.
DOI: 10.1088/0256-307X/29/7/076501
Bi4Si3O12 (BSO) is an excellent scintillation crystal, and is becoming the desirable candidate for dual-readout calorimeters in high-energy physics. In this work, high quality BSO crystals are successfully grown by the modified Bridgman method. For the first time, its mechanical and thermal properties are investigated and compared with those of the famous scintillation crystal Bi4Ge3O12 (BGO). The Vickers hardness and fracture toughness of BSO crystal are higher than those of BGO crystal. Its specific heat, thermal diffusivity and thermal conductivity are measured to be 0.319 J⋅gK-1, 1.54 mm2⋅s-1 and 3.29 W⋅m-1K-1 at 298 K, respectively. The average thermal expansion coefficient is calculated to be 7.07×10-6 K-1 from 300 to 1173 K. Compared with BGO crystal, BSO crystal possesses larger specific heat, thermal conductivity and smaller thermal expansion. These results indicate that BSO crystals possess better mechanical and thermal properties, which will benefit its practical applications.
|
|
Metalorganic Chemical Vapor Deposition Growth of InAs/GaSb Superlattices on GaAs Substrates and Doping Studies of P-GaSb and N-InAs
LI Li-Gong, LIU Shu-Man, LUO Shuai, YANG Tao, WANG Li-Jun, LIU Feng-Qi, YE Xiao-Ling, XU Bo, WANG Zhan-Guo
Chin. Phys. Lett. 2012, 29 (7):
076801
.
DOI: 10.1088/0256-307X/29/7/076801
InAs/GaSb type-II superlattices (SLs), Zn-doped GaSb and Si-doped InAs were grown on semi-insulating (001) GaAs substrates by metalorganic chemical vapor deposition. X-ray diffraction reveals that complete strain compensation between the SLs and the GaSb buffer layer is achieved in our SL samples. The relationship between the hole concentration p in GaSb and the diethylzinc (DEZn) flow rate is p∝[DEZn]0.57. The electron concentration in InAs does not show good linearity with the SiH4 flow rate. The growth rate of the p-GaSb epilayer is decreased as the DEZn mole fraction increases, while the growth rate of the n-InAs epilayer is weakly dependent on the SiH4 flow rate.
|
|
Controllable Excitation of Surface Plasmons in End-to-Trunk Coupled Silver Nanowire Structures
ZHU Yin, WEI Hong, YANG Peng-Fei, XU Hong-Xing
Chin. Phys. Lett. 2012, 29 (7):
077302
.
DOI: 10.1088/0256-307X/29/7/077302
In branched nanowire structures, the controllable excitation of surface plasmons is investigated by both experiments and simulations. By focusing the excitation light at the junction between the main wire and the branch wire, surface plasmons can be selectively launched to propagate to different output terminals, depending on the polarization of the excitation light. The parameters influencing the plasmon excitation and thus emission behavior are investigated, including the branch angle, the position of the branch and the nanowire radius. The different polarization dependence of the output light is determined by the surface plasmon modes selectively excited in the junction through end-excitation or/and gap-excitation manners. For the branch wire, when the branch angle is small, the end-excitation is dominant, which makes the branched wire behave like an individual nanowire. With the increase of the branch angle, the coupling between the branch wire end and the primary wire trunk is increased, which influences the plasmon excitation in the branch wire as evidenced by the rotation of the polarization angle for maximum output. For the primary wire, the SP excitation is dependent on the branch angle, position of the junction along the primary wire, and the radii of the nanowires. The results may be important for the design of a controllable surface plasmon launcher, one of the functional components in surface-plasmon-based nanophotonic circuits.
|
|
Alternating-Current Transport Properties in Nd0.7Sr0.3MnO3 Ceramic with Secondary Phases
CHEN Shun-Sheng, YANG Chang-Ping, LUO Xiao-Jing, Medvedeva I V
Chin. Phys. Lett. 2012, 29 (7):
077303
.
DOI: 10.1088/0256-307X/29/7/077303
Nd0.7Sr0.3MnO3 ceramics with secondary phases were prepared by ball-milling and post heat- treatment at 1623 K for 3, 7 and 13 h, respectively. The results from x-ray diffraction and energy dispersed spectroscopy show that some secondary phases are introduced and grow gradually with sintering time. These secondary phases have significant effects on the ac transport. For all the samples, the real part of impedance (Zr ) decreases with increasing frequency and the Zr peak moves to a higher temperature. Interestingly, for a given frequency the Zr peak decreases with sintering time. However, for samples B and C which were sintered for a longer time than sample A, an additional Zr peak appears at a higher temperature and gradually increases with sintering time. The reposition of trapped charges in phase/grain boundaries or secondary phases is supposed to be responsible for the unusual relaxation process.
|
|
First Principle Study of the Electronic Properties of 3C-SiC Doped with Different Amounts of Ni
DOU Yan-Kun, QI Xin, JIN Hai-Bo, CAO Mao-Sheng, Usman Zahid, HOU Zhi-Ling
Chin. Phys. Lett. 2012, 29 (7):
077701
.
DOI: 10.1088/0256-307X/29/7/077701
The electronic properties of 3C-SiC doped with different contents of Ni are investigated by using first-principles calculations. It is observed that the non-filled impurity energy levels in the band-gap region increase with increasing Ni content, which subsequently results in an enhancement of electrical conductivity of 3C-SiC. This enhancement in conductivity is verified by the conductivity spectrum in which new peaks appear in the middle-infrared region, visible region, and middle-ultraviolet region. It is further observed that the width and intensity of these newly appeared peaks increase with the increase of Ni content. The electronic density of states exhibits the peaks crossing the Fermi level, which favors the electronic transitions and proves Ni-doped 3C-SiC to be a half-metallic semiconductor. Through the analysis of electron density difference and Mulliken overlap population, it is found that the covalent bonds are formed between Ni and near-by C atoms. These features confirm that the Ni-doped 3C-SiC semiconductor is a promising material for device applications in modern day electronics.
|
|
Abnormal Temperature Dependence of Coercivity in Cobalt Nanowires
FAN Xiu-Xiu, HU Hai-Ning, ZHOU Shi-Ming, YANG Mao, DU Jun, SHI Zhong
Chin. Phys. Lett. 2012, 29 (7):
077802
.
DOI: 10.1088/0256-307X/29/7/077802
Co nanowire arrays have been fabricated into anodic aluminum oxide templates at 20°C by dc electrodeposition. It is shown that Co nanowires fabricated at lower and higher growth voltages have a hexagonal close packing (hcp) structure with preferred [100] orientation along the nanowire axis and a face-centered cubic (fcc) structure with preferred [220] orientation, respectively. With increasing growth voltage, the room-temperature coercivity along the nanowire axis is enhanced gradually. For fcc Co nanowires, the coercivity increases monotonically with increasing temperature while for hcp Co nanowires, a minimal coercivity is obtained along both parallel-to-axis and perpendicular-to-axis orientations with the temperature rising from 50 K to 390 K. The abnormal temperature dependence of the coercivity can be attributed to the competition between the shape anisotropy and magnetocrystalline anisotropy as a function of temperature.
|
|
Growth-induced Stacking Faults of ZnO Nanorods Probed by Spatial Resolved Cathodoluminescence
XIE Yong, JIE Wan-Qi, WANG Tao, WIEDENMANN Michael, NEUSCHL Benjamin, MADEL Manfred, WANG Ya-Bin, FENEBERG Martin, THONKE Klaus
Chin. Phys. Lett. 2012, 29 (7):
077803
.
DOI: 10.1088/0256-307X/29/7/077803
Low density ZnO nanorods are grown by modified chemical vapor deposition on silicon substrates using gold as a catalyst. We use high resolution photoluminescence spectroscopy to gain the optical properties of these nanorods in large scale. The as-grown samples show sharp near-band-gap luminescence with a full width at half maximum of bound exciton peaks at about 300 µeV, and the ratio of ultraviolet/yellow luminescence larger than 100. Highly spatial and spectral resolved scanning electron microscope-cathodoluminescence is performed to excite the ZnO nanorods in single rods or different positions of single rods with the vapour-solid growth mechanism. The bottom of the nanorod has a 3.31-eV luminescence, which indicates that basal plane stacking faults are related to the defects that are created at the first stage of growth due to the misfit between ZnO and Si.
|
|
Effect of Grain Boundary on Spinodal Decomposition Using the Phase Field Crystal Method
YANG Tao, CHEN Zheng, ZHANG Jing, DONG Wei-Ping, WU Lin
Chin. Phys. Lett. 2012, 29 (7):
078103
.
DOI: 10.1088/0256-307X/29/7/078103
Spinodal decomposition (SD) with different grain boundaries (GBs) is investigated on the atomic scale using the novel phase field crystal model. It is demonstrated that the decomposition process is initiated by precipitating one phase with a larger lattice constant in the tension region at the GBs and the other one with a smaller lattice constant in the compression region. As the phase separation proceeds, the dislocations comprising the low-angle GBs migrate toward the compositional domain boundaries to relieve the coherent strain energy, and eventually become randomly distributed in the coarsening regime of SD, which leads to the disappearance of the low-angle GBs. For high-angle GBs, the location of GBs remains unchanged, while the atoms rearrange along the GBs to fit the stress field arising from compositional inhomogeneity.
|
|
Influence of Dry Etching Damage on the Internal Quantum Efficiency of Nanorod InGaN/GaN Multiple Quantum Wells
YU Zhi-Guo, CHEN Peng YANG Guo-Feng, LIU Bin, XIE Zi-Li, XIU Xiang-Qian, WU Zhen-Long, XU Feng, XU Zhou, HUA Xue-Mei, HAN Ping, SHI Yi ZHANG Rong, ZHENG You-Dou
Chin. Phys. Lett. 2012, 29 (7):
078501
.
DOI: 10.1088/0256-307X/29/7/078501
The influence of dry etching damage on the internal quantum efficiency of InGaN/GaN nanorod multiple quantum wells (MQWs) is studied. The samples were etched by inductively coupled plasma (ICP) etching via a self-assembled nickel nanomask, and examined by room-temperature photoluminescence measurement. The key parameters in the etching process are rf power and ICP power. The internal quantum efficiency of nanorod MQWs shows a 5.6 times decrease substantially with the rf power increasing from 3 W to 100 W. However, it is slightly influenced by the ICP power, which shows 30% variation over a wide ICP power range between 30 W and 600 W. Under the optimized etching condition, the internal quantum efficiency of nanorod MQWs can be 40% that of the as-grown MQW sample, and the external quantum efficiency of nanorod MQWs can be about 4 times that of the as-grown one.
|
|
Thermoluminescence Response of Germanium-Doped Optical Fibers to X-Ray Irradiation
M. A. Saeed, N. A. Fauzia, I. Hossain, A. T. Ramli, B. A. Tahir
Chin. Phys. Lett. 2012, 29 (7):
078701
.
DOI: 10.1088/0256-307X/29/7/078701
We present the characteristics of the thermoluminescence (TL) response of Ge-doped optical fibers with various energies and exposures of photon irradiation. To investigate the Ge-doped SiO2 as an efficient TL material, the TL responses are compared with commercially available standard TLD100 media. The Ge-doped optical fiber and TLD100 are placed in gelatin capsules and irradiated with x-ray using a Toshiba model KXO-15R x-ray generator. The Ge-doped fiber and TLD-100 show linear response as a function of current and time using x-ray photon of energy 60, 80 and 100 kV. When irradiated with 60, 80 and 100 kV x-ray energy at various currents (mA), tube distance (cm) and exposure time (second) ranges, TLD100 media provide a TL yield up to two times that of Ge-doped fibers. The energy response of the Ge-doped fibers is linear and similar over the 60–100 kV energy range, and its sensitivity is 0.39±0.05 of the TLD100 media. The glow curves of TLD 100 and doped optical fiber are also compared.
|
|
A Poly-(3-Hexylthiophene) (P3HT)/[6,6]-Phenyl-C61-Butyric Acid Methyl Ester (PCBM) Bilayer Organic Solar Cell Fabricated by Airbrush Spray Deposition
CHEN Zheng, DENG Zhen-Bo, ZHOU Mao-Yang, LÜ Zhao-Yue, DU Hai-Liang, ZOU Ye, YIN Yue-Hong, LUN Jian-Chao
Chin. Phys. Lett. 2012, 29 (7):
078801
.
DOI: 10.1088/0256-307X/29/7/078801
Airbrush spray deposition is applied to fabricate a bilayer heterojunction solar cell based on P3HT/PCBM. This solar cell device shows an open-circuit voltage of 0.36 V, a short circuit current density of 6.76 mA/cm2, a conversion efficiency of 0.74%, and a fill factor of 30.4%. The results demonstrate that airbrush spray deposition is an effective method to fabricate multilayer or other complex polymer-based organic solar cells. Although spin-coated bulk heterojunction devices have better performance than the airbrushed ones, the airbrush is indeed feasible as a low-cost yet simple process. It is noteworthy that such preliminary results of the airbrush spray solar cell is unoptimized and thus its performance can be further improved with the development of this technology. Furthermore, this method itself has huge potential as it can be used for other polymer-based organic thin film devices.
|
78 articles
|