Chin. Phys. Lett.  2012, Vol. 29 Issue (6): 060302    DOI: 10.1088/0256-307X/29/6/060302
GENERAL |
Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model
LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing**
Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006
Cite this article:   
LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing 2012 Chin. Phys. Lett. 29 060302
Download: PDF(550KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract The energy spectrum of Dicke Hamiltonians with and without the rotating wave approximation for an arbitrary atom number is obtained analytically by means of the variational method, in which the effective pseudo-spin Hamiltonian resulting from the expectation value in the boson-field coherent state is diagonalized by the spin-coherent-state transformation. In addition to the ground-state energy, an excited macroscopic quantum-state is found corresponding to the south- and north-pole gauges of the spin-coherent states, respectively. Our results of ground-state energies in exact agreement with various approaches show that these models exhibit a zero-temperature quantum phase transition of the second order for any number of atoms, which was commonly considered as a phenomenon of the thermodynamic limit with the atom number tending to infinity. The critical behavior of the geometric phase is analyzed.
Received: 20 February 2012      Published: 31 May 2012
PACS:  03.65.Fd (Algebraic methods)  
  64.70.Tg (Quantum phase transitions)  
  42.50.Ct (Quantum description of interaction of light and matter; related experiments)  
  03.65.Vf (Phases: geometric; dynamic or topological)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/6/060302       OR      https://cpl.iphy.ac.cn/Y2012/V29/I6/060302
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIAN Jin-Ling
ZHANG Yuan-Wei
LIANG Jiu-Qing
[1] Dicke R H 1954 Phys. Rev. 93 99
[2] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)
[3] Zanardi P, Paris M G A and Venuti L C 2008 Phys. Rev. A 78 042105
[4] Hepp K and Lieb E H 1973 Ann. Phys. 76 360
[5] Wang Y K and Hioe F T 1973 Phys. Rev. A 7 831
[6] Vidal J and Dusuel S 2006 Europhys. Lett. 74 817
[7] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098
[8] Emary C and Brandes T 2003 Phys. Rev. Lett. 90 044101
Emary C and Brandes T 2003 Phys. Rev. E 67 066203
[9] Dimer F, Estienne B, Parkins A S and Carmichael H J 2007 Phys. Rev. A 75 013804
[10] Baumann K, Guerlin C, Brennecke F and Esslinger T 2010 Nature 464 1301
[11] Keeling J, Bhaseen M J and Simons B D 2010 Phys. Rev. Lett. 105 043001
[12] Liu N, Lian J, Ma J, Xiao L, Chen G, Liang J Q and Jia S 2011 Phys. Rev. A 83 033601
[13] Lai Y Z, Liang J Q, Müller-Kirsten H J W and Zhou J G 1996 Phys. Rev. A 53 3691
[14] Chen Z D, Liang J Q, Shen S Q and Xie W F 2004 Phys. Rev. A 69 023611
[15] Irish E K 2007 Phys. Rev. Lett. 99 173601
[16] Casta?os O, Nahmad-Achar E, López-Pe?a R and Hirsch J G 2011 Phys. Rev. A 83 051601(R)
[17] Liang J Q and Ding X X 1993 Phys. Lett. A 176 165
[18] Nagy D, Kónya G, Szirmai G and Domokos P 2010 Phys. Rev. Lett. 104 130401
[19] Emary C and Brandes T 2004 Phys. Rev. A 69 053804
[20] Chen G, Li J and Liang J Q 2006 Phys. Rev. A 74 054101
[21] Zhu S L 2006 Phys. Rev. Lett. 96 077206
[22] Carollo A C M and Pachos J K 2005 Phys. Rev. Lett. 95 157203
[23] Liu Y, Wei L F, Jia W Z and Liang J Q 2010 Phys. Rev. A 82 045801
Related articles from Frontiers Journals
[1] Wen-Ya Song, Fu-Lin Zhang. Dynamical Algebras in the 1+1 Dirac Oscillator and the Jaynes–Cummings Model[J]. Chin. Phys. Lett., 2020, 37(5): 060302
[2] Jie Zhou, Hong-Yi Su, Fu-Lin Zhang, Hong-Biao Zhang, Jing-Ling Chen. Solving the Jaynes–Cummings Model with Shift Operators Constructed by Means of the Matrix-Diagonalizing Technique[J]. Chin. Phys. Lett., 2018, 35(1): 060302
[3] Guang Yang, Wei Li, Li-Xiang Cen. Nonadiabatic Population Transfer in a Tangent-Pulse Driven Quantum Model[J]. Chin. Phys. Lett., 2018, 35(1): 060302
[4] Bing-Sheng Lin, Tai-Hua Heng. A Relation of the Noncommutative Parameters in Generalized Noncommutative Phase Space[J]. Chin. Phys. Lett., 2016, 33(11): 060302
[5] LAI Meng-Yun, XIAO Duan-Liang, PAN Xiao-Yin. The Harmonic Potential Theorem for a Quantum System with Time-Dependent Effective Mass[J]. Chin. Phys. Lett., 2015, 32(11): 060302
[6] ALSADI Khalid S. Eigen Spectra of the Dirac Equation for Deformed Woods–Saxon Potential via the Similarity Transformation[J]. Chin. Phys. Lett., 2014, 31(12): 060302
[7] HUANG Jie-Hui, HU Li-Yun, WANG Lei, ZHU Shi-Yao. Separability Criterion for Bipartite States and Its Generalization to Multipartite Systems[J]. Chin. Phys. Lett., 2014, 31(04): 060302
[8] Joydeep Choudhury, Nirmal Kumar Sarkar, Ramendu Bhattacharjee. Infrared Spectra of PH3 and NF3: An Algebraic Approach[J]. Chin. Phys. Lett., 2013, 30(7): 060302
[9] Sameer M. Ikhdair, Babatunde J. Falaye, Majid Hamzavi. Approximate Eigensolutions of the Deformed Woods–Saxon Potential via AIM[J]. Chin. Phys. Lett., 2013, 30(2): 060302
[10] Akpan N. Ikot, Ita O. Akpan. Bound State Solutions of the Schr?dinger Equation for a More General Woods–Saxon Potential with Arbitrary l-State[J]. Chin. Phys. Lett., 2012, 29(9): 060302
[11] M. Hamzavi, M. Movahedi, K.-E. Thylwe, and A. A. Rajabi. Approximate Analytical Solution of the Yukawa Potential with Arbitrary Angular Momenta[J]. Chin. Phys. Lett., 2012, 29(8): 060302
[12] KANG Jing, QU Chang-Zheng. Symmetry Groups and Gauss Kernels of the Schrödinger Equations with Potential Functions[J]. Chin. Phys. Lett., 2012, 29(7): 060302
[13] Hassanabadi Hassan, Yazarloo Bentol Hoda, LU Liang-Liang. Approximate Analytical Solutions to the Generalized Pöschl–Teller Potential in D Dimensions[J]. Chin. Phys. Lett., 2012, 29(2): 060302
[14] LIN Bing-Sheng**, HENG Tai-Hua . Energy Spectra of the Harmonic Oscillator in a Generalized Noncommutative Phase Space of Arbitrary Dimension[J]. Chin. Phys. Lett., 2011, 28(7): 060302
[15] ZHANG Min-Cang**, HUANG-FU Guo-Qing . Analytical Approximation to the -Wave Solutions of the Hulthén Potential in Tridiagonal Representation[J]. Chin. Phys. Lett., 2011, 28(5): 060302
Viewed
Full text


Abstract