GENERAL |
|
|
|
|
Macroscopic Quantum States and Quantum Phase Transition in the Dicke Model |
LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing** |
Institute of Theoretical Physics and Department of Physics, Shanxi University, Taiyuan 030006 |
|
Cite this article: |
LIAN Jin-Ling, ZHANG Yuan-Wei, LIANG Jiu-Qing 2012 Chin. Phys. Lett. 29 060302 |
|
|
Abstract The energy spectrum of Dicke Hamiltonians with and without the rotating wave approximation for an arbitrary atom number is obtained analytically by means of the variational method, in which the effective pseudo-spin Hamiltonian resulting from the expectation value in the boson-field coherent state is diagonalized by the spin-coherent-state transformation. In addition to the ground-state energy, an excited macroscopic quantum-state is found corresponding to the south- and north-pole gauges of the spin-coherent states, respectively. Our results of ground-state energies in exact agreement with various approaches show that these models exhibit a zero-temperature quantum phase transition of the second order for any number of atoms, which was commonly considered as a phenomenon of the thermodynamic limit with the atom number tending to infinity. The critical behavior of the geometric phase is analyzed.
|
|
Received: 20 February 2012
Published: 31 May 2012
|
|
PACS: |
03.65.Fd
|
(Algebraic methods)
|
|
64.70.Tg
|
(Quantum phase transitions)
|
|
42.50.Ct
|
(Quantum description of interaction of light and matter; related experiments)
|
|
03.65.Vf
|
(Phases: geometric; dynamic or topological)
|
|
|
|
|
[1] Dicke R H 1954 Phys. Rev. 93 99[2] Sachdev S 1999 Quantum Phase Transitions (Cambridge: Cambridge University Press)[3] Zanardi P, Paris M G A and Venuti L C 2008 Phys. Rev. A 78 042105[4] Hepp K and Lieb E H 1973 Ann. Phys. 76 360[5] Wang Y K and Hioe F T 1973 Phys. Rev. A 7 831[6] Vidal J and Dusuel S 2006 Europhys. Lett. 74 817[7] Holstein T and Primakoff H 1940 Phys. Rev. 58 1098[8] Emary C and Brandes T 2003 Phys. Rev. Lett. 90 044101 Emary C and Brandes T 2003 Phys. Rev. E 67 066203[9] Dimer F, Estienne B, Parkins A S and Carmichael H J 2007 Phys. Rev. A 75 013804[10] Baumann K, Guerlin C, Brennecke F and Esslinger T 2010 Nature 464 1301[11] Keeling J, Bhaseen M J and Simons B D 2010 Phys. Rev. Lett. 105 043001[12] Liu N, Lian J, Ma J, Xiao L, Chen G, Liang J Q and Jia S 2011 Phys. Rev. A 83 033601[13] Lai Y Z, Liang J Q, Müller-Kirsten H J W and Zhou J G 1996 Phys. Rev. A 53 3691[14] Chen Z D, Liang J Q, Shen S Q and Xie W F 2004 Phys. Rev. A 69 023611[15] Irish E K 2007 Phys. Rev. Lett. 99 173601[16] Casta?os O, Nahmad-Achar E, López-Pe?a R and Hirsch J G 2011 Phys. Rev. A 83 051601(R)[17] Liang J Q and Ding X X 1993 Phys. Lett. A 176 165[18] Nagy D, Kónya G, Szirmai G and Domokos P 2010 Phys. Rev. Lett. 104 130401[19] Emary C and Brandes T 2004 Phys. Rev. A 69 053804[20] Chen G, Li J and Liang J Q 2006 Phys. Rev. A 74 054101[21] Zhu S L 2006 Phys. Rev. Lett. 96 077206[22] Carollo A C M and Pachos J K 2005 Phys. Rev. Lett. 95 157203[23] Liu Y, Wei L F, Jia W Z and Liang J Q 2010 Phys. Rev. A 82 045801 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|