Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 044204    DOI: 10.1088/0256-307X/29/4/044204
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
The Improved Power of the Central Lobe in the Beam Combination and High Power Output
LIU Hou-Kang1,2,XUE Yu-Hao1,2,LI Zhen1,2,HE Bing1**,ZHOU Jun1**,DING Ya-Qian1,2,JIAO Meng-Li1,2,LIU Chi1,QI Yun-Feng1,WEI Yun-Rong1,DONG Jing-Xing1,LOU Qi-Hong1
1Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800
2Graduate University of Chinese Academy of Sciences, Beijing 100049
Cite this article:   
LIU Hou-Kang, XUE Yu-Hao, LI Zhen et al  2012 Chin. Phys. Lett. 29 044204
Download: PDF(1569KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In order to increase the power fraction of the central lobe in the coherent beam combination of lasers in an array, the effects of the distance factor of near-field distribution on far-field interference patterns are calculated and demonstrated experimentally. An improved beam array of interwoven distribution is demonstrated to enable the power in the central lobe to reach 41%. An optimized mirror array is carefully designed to obtain a high duty ratio, which is up to 53.3% at a high power level. By using these optimized methods and designs, the passive phase locking of eight Yb-doped fiber amplifiers with ring cavities are obtained, and a pleasing interference pattern with 87% visibility is observed. The maximum coherent output power of the system is up to 1066 W.
Received: 31 October 2011      Published: 04 April 2012
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Da (Resonators, cavities, amplifiers, arrays, and rings)  
  42.60.Fc (Modulation, tuning, and mode locking)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/044204       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/044204
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LIU Hou-Kang
XUE Yu-Hao
LI Zhen
HE Bing
ZHOU Jun
DING Ya-Qian
JIAO Meng-Li
LIU Chi
QI Yun-Feng
WEI Yun-Rong
DONG Jing-Xing
LOU Qi-Hong
[1] Jeong Y, Sahu J K, Payne D N and Nilsson J 2004 Opt. Express 12 6088
[2] Jeong Y, Boyland A J, Sahu J K, Chung S, Nilsson J and Payne D N 2009 J. Opt. Soc. Korea 13 416
[3] Richardson D J, Nilsspm J and Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63
[4] He B, Zhou J, Lou Q H, Xue Y H, Li Z, Wang W, Dong J X, Wei Y R and Chen W B 2010 Microwave Opt. Technol. Lett. 52 1668
[5] O'Connor M, Gapontsev V, Fomin V, Abramov M and Ferin A 2009 CLEO paper CThA3
[6] Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W and Barty C P J 2008 Opt. Express 16 13240
[7] Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tünnermann A, Ludewigt K, Gowin M, Have E T and Jung M 2011 Opt. Lett. 36 3118
[8] Anderegg J, Brosnan S J, Cheung E, Epp P, Hammons D, Komine H, Weber E and Wickham M 2006 Proc. SPIE 6102 61020U
[9] Shay T M, Baker J T, Sanchez A D, Robin C A, Vergien C L, Zeringue C, Gallant D, Chunte L A, Pulford B, Bronder T J and Lucero A 2009 Proc. SPIE 7195 71951M
[10] Ma Y X, Wang X L, Leng J Y, Xiao H, Dong X L, Zhu J J, Du W B, Zhou P, Xu X J, Si L, Liu Z J and Zhao Y J 2011 Opt. Lett. 36 951
[11] Zhou P, Liu Z J, Wang X L, Ma Y X, Ma H T and Xu X J 2009 Appl. Phys. Lett. 94 231106
[12] Wang B S, Mies E, Minden M and Sanchez A 2009 Opt. Lett. 34 863
[13] Bochove E J, Cheo P K and King G G 2003 Opt. Lett. 28 1200
[14] Corcoran C J and Durville F 2005 Appl. Phys. Lett. 86 201118
[15] He B, Lou Q H, Zhou J, Dong J X, Wei Y R, Xue D, Qi Y F, Su Z P, Li L B and Zhang F P Opt. Express 14 2721
[16] Lhermite J, Desfarges Berthelemot A, Kermene V and Barthelemy A 2007 Opt. Lett. 32 1842
[17] Wang W, Lou Q H, He B, Zhou J, Li Z, Xue Yuhao and Liu X 2010 Chin. Opt. Lett. 8 490
[18] Xue Y H, He B, Zhou J, Li Z, Fan Y Y, Qi Y F, Liu C, Yuan Z J, Zhang H B and Lou Q H 2011 Chin. Phys. Lett. 28 054212
Related articles from Frontiers Journals
[1] Wen-Wen Cui, Xiao-Wei Xing, Yue-Qian Chen, Yue-Jia Xiao, Han Ye, and Wen-Jun Liu. Tunable Dual-Wavelength Fiber Laser in a Novel High Entropy van der Waals Material[J]. Chin. Phys. Lett., 2023, 40(2): 044204
[2] Ming-Xiao Wang, Ping-Xue Li, Yang-Tao Xu, Yun-Chen Zhu, Shun Li, and Chuan-Fei Yao. An All-Fiberized Chirped Pulse Amplification System Based on Chirped Fiber Bragg Grating Stretcher and Compressor[J]. Chin. Phys. Lett., 2022, 39(2): 044204
[3] Yuan-Yuan Yan  and Wen-Jun Liu. Soliton Rectangular Pulses and Bound States in a Dissipative System Modeled by the Variable-Coefficients Complex Cubic-Quintic Ginzburg–Landau Equation[J]. Chin. Phys. Lett., 2021, 38(9): 044204
[4] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy *[J]. Chin. Phys. Lett., 0, (): 044204
[5] Kai Ning, Lei Hou, Song-Tao Fan, Lu-Lu Yan, Yan-Yan Zhang, Bing-Jie Rao, Xiao-Fei Zhang, Shou-Gang Zhang, Hai-Feng Jiang. An All-Polarization-Maintaining Multi-Branch Optical Frequency Comb for Highly Sensitive Cavity Ring-Down Spectroscopy[J]. Chin. Phys. Lett., 2020, 37(6): 044204
[6] H. Ahmad, M. F. Ismail, S. N. Aidit. Optically Modulated Tunable O-Band Praseodymium-Doped Fluoride Fiber Laser Utilizing Multi-Walled Carbon Nanotube Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(10): 044204
[7] N. F. Zulkipli, M. Batumalay, F. S. M. Samsamnun, M. B. H. Mahyuddin, E. Hanafi, T. F. T. M. N. Izam, M. I. M. A. Khudus, S. W. Harun. Nanosecond Pulses Generation with Samarium Oxide Film Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(7): 044204
[8] R. Z. R. R. Rosdin, M. T. Ahmad, A. R. Muhammad, Z. Jusoh, H. Arof, S. W. Harun. Nanosecond Pulse Generation with Silver Nanoparticle Saturable Absorber[J]. Chin. Phys. Lett., 2019, 36(5): 044204
[9] Lu Li, Rui-Dong Lv, Si-Cong Liu, Zhen-Dong Chen, Jiang Wang, Yong-Gang Wang, Wei Ren. Using Reduced Graphene Oxide to Generate Q-Switched Pulses in Er-Doped Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(11): 044204
[10] Gen Li, Yong Zhou, Shu-Jie Li, PeiJun Yao, Wei-qing Gao, Chun Gu, Li-Xin Xu. Synchronously Pumped Mode-Locked 1.89μm Tm-Doped Fiber Laser with High Detuning Toleration[J]. Chin. Phys. Lett., 2018, 35(11): 044204
[11] M. F. M. Rusdi, M. B. H. Mahyuddin, A. A. Latiff , H. Ahmad, S. W. Harun. Q-Switched Erbium-Doped Fiber Laser Using Cadmium Selenide Coated onto Side-Polished D-Shape Fiber as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(10): 044204
[12] Guan Wang, Lixin Xu, Chun Gu. Passive, Stable and Order-Adjustable SBS Q-Switching Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(8): 044204
[13] Qi-Rong Xiao, Jia-Ding Tian, Yu-Sheng Huang, Xue-Jiao Wang, Ze-Hui Wang, Dan Li, Ping Yan, Ma-Li Gong. Internal Features of Fiber Fuse in a Yb-Doped Double-Clad Fiber at 3kW[J]. Chin. Phys. Lett., 2018, 35(5): 044204
[14] Lei Zhao, Pei-Jun Yao, Chun Gu, Li-Xin Xu. Raman-Assisted Passively Mode-Locked Fiber Laser[J]. Chin. Phys. Lett., 2018, 35(4): 044204
[15] A. Nady, M. F. Baharom, A. A. Latiff, S. W. Harun. Mode-Locked Erbium-Doped Fiber Laser Using Vanadium Oxide as Saturable Absorber[J]. Chin. Phys. Lett., 2018, 35(4): 044204
Viewed
Full text


Abstract