FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
|
|
|
|
The Improved Power of the Central Lobe in the Beam Combination and High Power Output |
LIU Hou-Kang1,2,XUE Yu-Hao1,2,LI Zhen1,2,HE Bing1**,ZHOU Jun1**,DING Ya-Qian1,2,JIAO Meng-Li1,2,LIU Chi1,QI Yun-Feng1,WEI Yun-Rong1,DONG Jing-Xing1,LOU Qi-Hong1 |
1Shanghai Key Laboratory of All Solid-State Laser and Applied Techniques, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800 2Graduate University of Chinese Academy of Sciences, Beijing 100049 |
|
Cite this article: |
LIU Hou-Kang, XUE Yu-Hao, LI Zhen et al 2012 Chin. Phys. Lett. 29 044204 |
|
|
Abstract In order to increase the power fraction of the central lobe in the coherent beam combination of lasers in an array, the effects of the distance factor of near-field distribution on far-field interference patterns are calculated and demonstrated experimentally. An improved beam array of interwoven distribution is demonstrated to enable the power in the central lobe to reach 41%. An optimized mirror array is carefully designed to obtain a high duty ratio, which is up to 53.3% at a high power level. By using these optimized methods and designs, the passive phase locking of eight Yb-doped fiber amplifiers with ring cavities are obtained, and a pleasing interference pattern with 87% visibility is observed. The maximum coherent output power of the system is up to 1066 W.
|
|
Received: 31 October 2011
Published: 04 April 2012
|
|
PACS: |
42.55.Wd
|
(Fiber lasers)
|
|
42.60.Da
|
(Resonators, cavities, amplifiers, arrays, and rings)
|
|
42.60.Fc
|
(Modulation, tuning, and mode locking)
|
|
|
|
|
[1] Jeong Y, Sahu J K, Payne D N and Nilsson J 2004 Opt. Express 12 6088[2] Jeong Y, Boyland A J, Sahu J K, Chung S, Nilsson J and Payne D N 2009 J. Opt. Soc. Korea 13 416[3] Richardson D J, Nilsspm J and Clarkson W A 2010 J. Opt. Soc. Am. B 27 B63[4] He B, Zhou J, Lou Q H, Xue Y H, Li Z, Wang W, Dong J X, Wei Y R and Chen W B 2010 Microwave Opt. Technol. Lett. 52 1668[5] O'Connor M, Gapontsev V, Fomin V, Abramov M and Ferin A 2009 CLEO paper CThA3[6] Dawson J W, Messerly M J, Beach R J, Shverdin M Y, Stappaerts E A, Sridharan A K, Pax P H, Heebner J E, Siders C W and Barty C P J 2008 Opt. Express 16 13240[7] Wirth C, Schmidt O, Tsybin I, Schreiber T, Eberhardt R, Limpert J, Tünnermann A, Ludewigt K, Gowin M, Have E T and Jung M 2011 Opt. Lett. 36 3118[8] Anderegg J, Brosnan S J, Cheung E, Epp P, Hammons D, Komine H, Weber E and Wickham M 2006 Proc. SPIE 6102 61020U[9] Shay T M, Baker J T, Sanchez A D, Robin C A, Vergien C L, Zeringue C, Gallant D, Chunte L A, Pulford B, Bronder T J and Lucero A 2009 Proc. SPIE 7195 71951M[10] Ma Y X, Wang X L, Leng J Y, Xiao H, Dong X L, Zhu J J, Du W B, Zhou P, Xu X J, Si L, Liu Z J and Zhao Y J 2011 Opt. Lett. 36 951[11] Zhou P, Liu Z J, Wang X L, Ma Y X, Ma H T and Xu X J 2009 Appl. Phys. Lett. 94 231106[12] Wang B S, Mies E, Minden M and Sanchez A 2009 Opt. Lett. 34 863[13] Bochove E J, Cheo P K and King G G 2003 Opt. Lett. 28 1200[14] Corcoran C J and Durville F 2005 Appl. Phys. Lett. 86 201118[15] He B, Lou Q H, Zhou J, Dong J X, Wei Y R, Xue D, Qi Y F, Su Z P, Li L B and Zhang F P Opt. Express 14 2721[16] Lhermite J, Desfarges Berthelemot A, Kermene V and Barthelemy A 2007 Opt. Lett. 32 1842[17] Wang W, Lou Q H, He B, Zhou J, Li Z, Xue Yuhao and Liu X 2010 Chin. Opt. Lett. 8 490[18] Xue Y H, He B, Zhou J, Li Z, Fan Y Y, Qi Y F, Liu C, Yuan Z J, Zhang H B and Lou Q H 2011 Chin. Phys. Lett. 28 054212 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|