Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 042101    DOI: 10.1088/0256-307X/29/4/042101
NUCLEAR PHYSICS |
Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum
LI Lu-Lu1,MENG Jie1,2,3,4,P. Ring1,5,ZHAO En-Guang3,1,6,ZHOU Shan-Gui3,6**
1State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871
2School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
3State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
4Department of Physics, University of Stellenbosch, Stellenbosch, South Africa
5Physikdepartment, Technische Universität München, 85748 Garching, Germany
6Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000
Cite this article:   
LI Lu-Lu, MENG Jie, P. Ring et al  2012 Chin. Phys. Lett. 29 042101
Download: PDF(490KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract In order to describe the exotic nuclear structure in unstable odd-A or odd−odd nuclei, the deformed relativistic Hartree Bogoliubov theory in continuum is extended to incorporate the blocking effect due to the odd nucleon. For a microscopic and self-consistent description of pairing correlations, continuum, deformation, blocking effects, and the extended spatial density distribution in exotic nuclei, the deformed relativistic Hartree Bogoliubov equations are solved in a Woods–Saxon basis in which the radial wave functions have a proper asymptotic behavior at large r. The formalism and numerical details are provided. The code is checked by comparing the results with those of spherical relativistic continuum Hartree Bogoliubov theory in the nucleus 19O. The prolate deformed nucleus 15C is studied by examining the neutron levels and density distributions.
Received: 10 January 2012      Published: 04 April 2012
PACS:  21.60.-n (Nuclear structure models and methods)  
  21.10.-k (Properties of nuclei; nuclear energy levels)  
  21.60.Jz (Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/042101       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/042101
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
LI Lu-Lu
MENG Jie
P. Ring
ZHAO En-Guang
ZHOU Shan-Gui
[1] Tanihata I et al 1985 Phys. Rev. Lett. 55 2676

[2] Meng J and Ring P 1996 Phys. Rev. Lett. 77 3963

[3] Meng J and Ring P 1998 Phys. Rev. Lett. 80 460

[4] Meng J 1998 Nucl. Phys. A 635 3

[5] Pöschl W et al 1997 Phys. Rev. Lett. 79 3841

[6] Long W H et al 2010 Phys. Rev. C 81 024308

[7] Zhou S G, Meng J and Ring P 2008 Physics of Unstable Nuclei (Singapore: World Scientific) p 402 arXiv:0803.1376v1[nucl-th]

[8] Zhou S G et al 2010 Phys. Rev. C 82 011301R

[9] Li L et al 2012 Phys. Rev. C 85 024312

[10] Ring P and Schuck P 1980 The Nuclear Many-Body Problem (New York: Springer-Verlag) chap 7 p 249

[11] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1

[12] Reinhard P G 1989 Rep. Prog. Phys. 52 439

[13] Ring P 1996 Prog. Part. Nucl. Phys. 37 193

[14] Vretenar D et al 2005 Phys. Rep. 409 101

[15] Meng J et al 2006 Prog. Part. Nucl. Phys. 57 470

[16] Schunck N et al 2010 Phys. Rev. C 81 024316

[17] Perez-Martin S and Robledo L M 2008 Phys. Rev. C 78 014304

[18] Long W H et al 2004 Phys. Rev. C 69 034319

[19] Zhou S G, Meng J and Ring P 2003 Phys. Rev. C 68 034323

[20] Fang D Q et al 2004 Phys. Rev. C 69 034613
Related articles from Frontiers Journals
[1] CHEN Yan-Jun. New Parametrizations for a Model with Nonlinear Derivative Couplings[J]. Chin. Phys. Lett., 2014, 31(07): 042101
[2] XU Yan, LIU Guang-Zhou, LIU Cheng-Zhi, FAN Cun-Bo, WANG Hong-Yan, ZHU Ming-Feng, ZHAO En-Guang. The Nucleon Direct Urca Processes in a Cooling Neutron Star[J]. Chin. Phys. Lett., 2013, 30(12): 042101
[3] M. Golshanian, O. N. Ghodsi, R. Gharaei, V. Zanganeh. The Analysis of the Fusion Reaction of Two Colliding Nuclei Using the FCC Lattice Model[J]. Chin. Phys. Lett., 2013, 30(10): 042101
[4] XU Yan, LIU Guang-Zhou, LIU Cheng-Zhi, FAN Cun-Bo, HAN Xing-Wei, ZHU Ming-Feng, WANG Hong-Yan, ZHANG Xiao-Jun. 1S0 Nucleon Superfluidity in Neutron Star Matter[J]. Chin. Phys. Lett., 2013, 30(6): 042101
[5] FANG De-Qing**, MA Yu-Gang, CAI Xiang-Zhou, TIAN Wen-Dong, WANG Hong-Wei . Effects of Neutron Skin Thickness in Peripheral Nuclear Reactions[J]. Chin. Phys. Lett., 2011, 28(10): 042101
[6] ZHANG Wei, LIANG Hao-Zhao, ZHANG Shuang-Quan, MENG Jie, . Search for Ring-Like Nuclei under Extreme Conditions[J]. Chin. Phys. Lett., 2010, 27(10): 042101
[7] GAO Yuan, ZHANG Hong-Fei, ZHANG Lei, CHEN Xi-Meng, LI Jun-Qing, GUO Wen-Jun. Relativistic Mean Field Study of the Z=117 Isotopic Chain[J]. Chin. Phys. Lett., 2010, 27(6): 042101
[8] ZHANG Ying, LIANG Hao-Zhao, MENG Jie,. Solving the Dirac Equation with Nonlocal Potential by Imaginary Time Step Method[J]. Chin. Phys. Lett., 2009, 26(9): 042101
[9] WANG Yan-Zhao, ZHANG Hong-Fei, DONG Jian-Min, SU Xin-Ning, ZUO Wei, LI Jun-Qing. Branching Ratios of α Decay for Nuclei near Deformed Shell Closures[J]. Chin. Phys. Lett., 2009, 26(6): 042101
[10] ZHANG Wei, PENG Jing, ZHANG Shuang-Quan. Description of 178Hfm2 in the Constrained Relativistic Mean Field Theory[J]. Chin. Phys. Lett., 2009, 26(5): 042101
[11] LÜ, Hong-Feng. Extreme Exotic Calcium Lambda Hypernuclei in the Relativistic Continuum Hartree--Bogoliubov Theory[J]. Chin. Phys. Lett., 2008, 25(10): 042101
[12] DONG Tie-Kuang, REN Zhong-Zhou,. Parity Violating Electron Scattering in the Relativistic Eikonal Approximation[J]. Chin. Phys. Lett., 2008, 25(7): 042101
[13] SUN Bao-Hua, MENG Jie, ,. Challenge on the Astrophysical R-Process Calculation with Nuclear Mass Models[J]. Chin. Phys. Lett., 2008, 25(7): 042101
[14] LIU Hong-Liang, XU Fu-Rong,. Triaxiality of High-K Isomers in A~130 Region[J]. Chin. Phys. Lett., 2008, 25(5): 042101
[15] Lü Hong-Feng. Hypernuclear Magnetic Moments and λ--N Interaction in 17λO[J]. Chin. Phys. Lett., 2007, 24(9): 042101
Viewed
Full text


Abstract