NUCLEAR PHYSICS |
|
|
|
|
Odd Systems in Deformed Relativistic Hartree Bogoliubov Theory in Continuum |
LI Lu-Lu1,MENG Jie1,2,3,4,P. Ring1,5,ZHAO En-Guang3,1,6,ZHOU Shan-Gui3,6** |
1State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871
2School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191
3State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190
4Department of Physics, University of Stellenbosch, Stellenbosch, South Africa
5Physikdepartment, Technische Universität München, 85748 Garching, Germany
6Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000 |
|
Cite this article: |
LI Lu-Lu, MENG Jie, P. Ring et al 2012 Chin. Phys. Lett. 29 042101 |
|
|
Abstract In order to describe the exotic nuclear structure in unstable odd-A or odd−odd nuclei, the deformed relativistic Hartree Bogoliubov theory in continuum is extended to incorporate the blocking effect due to the odd nucleon. For a microscopic and self-consistent description of pairing correlations, continuum, deformation, blocking effects, and the extended spatial density distribution in exotic nuclei, the deformed relativistic Hartree Bogoliubov equations are solved in a Woods–Saxon basis in which the radial wave functions have a proper asymptotic behavior at large r. The formalism and numerical details are provided. The code is checked by comparing the results with those of spherical relativistic continuum Hartree Bogoliubov theory in the nucleus 19O. The prolate deformed nucleus 15C is studied by examining the neutron levels and density distributions.
|
|
Received: 10 January 2012
Published: 04 April 2012
|
|
PACS: |
21.60.-n
|
(Nuclear structure models and methods)
|
|
21.10.-k
|
(Properties of nuclei; nuclear energy levels)
|
|
21.60.Jz
|
(Nuclear Density Functional Theory and extensions (includes Hartree-Fock and random-phase approximations))
|
|
|
|
|
[1] Tanihata I et al 1985 Phys. Rev. Lett. 55 2676[2] Meng J and Ring P 1996 Phys. Rev. Lett. 77 3963[3] Meng J and Ring P 1998 Phys. Rev. Lett. 80 460[4] Meng J 1998 Nucl. Phys. A 635 3[5] Pöschl W et al 1997 Phys. Rev. Lett. 79 3841[6] Long W H et al 2010 Phys. Rev. C 81 024308[7] Zhou S G, Meng J and Ring P 2008 Physics of Unstable Nuclei (Singapore: World Scientific) p 402 arXiv:0803.1376v1[nucl-th][8] Zhou S G et al 2010 Phys. Rev. C 82 011301R[9] Li L et al 2012 Phys. Rev. C 85 024312[10] Ring P and Schuck P 1980 The Nuclear Many-Body Problem (New York: Springer-Verlag) chap 7 p 249[11] Serot B D and Walecka J D 1986 Adv. Nucl. Phys. 16 1[12] Reinhard P G 1989 Rep. Prog. Phys. 52 439[13] Ring P 1996 Prog. Part. Nucl. Phys. 37 193[14] Vretenar D et al 2005 Phys. Rep. 409 101[15] Meng J et al 2006 Prog. Part. Nucl. Phys. 57 470[16] Schunck N et al 2010 Phys. Rev. C 81 024316[17] Perez-Martin S and Robledo L M 2008 Phys. Rev. C 78 014304[18] Long W H et al 2004 Phys. Rev. C 69 034319[19] Zhou S G, Meng J and Ring P 2003 Phys. Rev. C 68 034323[20] Fang D Q et al 2004 Phys. Rev. C 69 034613 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|