GENERAL |
|
|
|
|
New Exact Solutions to the (2+1)-Dimensional Ablowitz–Kaup–Newell–Segur Equation: Modification of the Extended Homoclinic Test Approach |
Mohammad Najafi1**,Maliheh Najafi1,M. T. Darvishi2 |
1Department of Physiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
2Department of Mathematics, Razi University, Kermanshah 67149, Iran |
|
Cite this article: |
Mohammad Najafi, Maliheh Najafi, M. T. Darvishi 2012 Chin. Phys. Lett. 29 040202 |
|
|
Abstract By means of modification of the extended homoclinic test approach (mEHTA), we obtain some new exact soliton solutions for the (2+1)-dimensional Ablowitz-Kaup-Newell-Segur (AKNS) equation by obtaining a bilinear closed form for it.
|
|
Received: 15 October 2011
Published: 04 April 2012
|
|
PACS: |
02.30.Jr
|
(Partial differential equations)
|
|
02.70.Wz
|
(Symbolic computation (computer algebra))
|
|
|
|
|
He J H 1999 Int. J. Non-linear Mech.34 699 Darvishi M T, Khani F and Soliman A A 2007 Comput. Math. Appl.54 1055 Darvishi M T and Khani F 2009 Chaos, Solitons and Fractals39 2484 Abbasbandy S and Darvishi M T 2005 Appl. Math. Comput.163 1265 Abbasbandy S and Darvishi M T 2005 Appl. Math. Comput.170 95 He J H 2006 Int. J. Mod. Phys. B 20 2561 He J H 2005 Chaos, Solitons and Fractals26 695 He J H 2005 Int. J. Nonlinear Sci. Numer. Simul.6 207 Darvishi M T and Khani F 2008 Z. Naturforsc. A 63 19 Darvishi M T, Khani F, Hamedi-Nezhad S and Ryu S W 2010 Int. J. Comput. Math.87 908 He J H 2001 Int. J. Nonlin. Sci. Numer. Simul.2 257 Darvishi M T, Karami A and Shin B C 2008 Phys. Lett. A372 5381 Shin B C, Darvishi M T and Karami A 2009 Int. J. Nonlin. Sci. Num. Simul.10 137 Darvishi M T 2004 Int. J. Pure Appl. Math.1 419 Darvishi M T, Kheybari S and Khani F 2006 Appl. Math. Comput.182 98 Darvishi M T and Javidi M 2006 Appl. Math. Comput.173 421 Darvishi M T, Khani F and Kheybari S 2007 Int. J. Comput. Math.84 541 Darvishi M T, Khani F and Kheybari S 2008 Nonlinear Sci. Numer. Simul.13 2091 Liao S J 1999 Int. J. Non-Linear Mech.34 759 Liao S J 2003 Beyond Perturbation: Introduction to the Homotopy Analysis Method (Boca Raton: Chapman & Hall/CRC Press) Liao S J 2004 Appl. Math. Comput.147 499 Liao S J 2005 Int. J. Heat Mass Transfer48 2529 Liao S J 2009 Commun. Nonlinear Sci. Numer. Simul.14 2144 Darvishi M T and Khani F 2009 Comput. Math. Appl.58 360 Aziz A, Khani F and Darvishi M T 2010 Z. Naturforsc. A 65 771 He J H and Abdou M A 2007 Chaos, Solitons and Fractals34 1421 He J H and Wu X H 2006 Chaos, Solitons and Fractals30 700 He J H and Wu X H 2006 Chaos, Solitons and Fractals29 108 Khani F, Hamedi-Nezhad S, Darvishi M T and Ryu S W 2009 Nonlin. Anal.: Real World Appl.10 1904 Shin B C, Darvishi M T and Barati A 2009 Comput. Math. Appl.58 2147 Wu X H and He J H 2008 Chaos, Solitons and Fractals38 903 Dai Z D, Lin S Q, Li D L and Mu G 2010 Nonl. Sci. Lett. A1 77 Wang C J, Dai Z D and Liang L 2010 Appl. Math. Comput.216 501 Yu S J, Toda K, Sasa N and Fukuyama T 1998 J. Phys. A: Math. Gen.31 3337 Yan Z 2003 Phys. Lett. A318 78 Zhao Z H, Dai Z D and Han S 2010 Appl. Math. Comput.217 4306 Darvishi M T and Najafi M 2011 Chin. Phys. Lett.28 040202 |
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|