Chin. Phys. Lett.  2012, Vol. 29 Issue (4): 040201    DOI: 10.1088/0256-307X/29/4/040201
GENERAL |
New Mechanical Feature of Two-Solitary Wave to the KdV Equation
DAI Zheng-De1**,WU Feng-Xia2,LIU Jun2, and MU Gui2
1School of Mathematics and Statistics, Yunnan University, Kunming 650091
2College of Mathematics and Information Science, Qujing Normal University, Qujing 655000
Cite this article:   
DAI Zheng-De, WU Feng-Xia, LIU Jun and MU Gui 2012 Chin. Phys. Lett. 29 040201
Download: PDF(815KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract New breather solitary solution and two-solitary solutions depending on constant equilibrium solution to the Korteweg de Vries equation are obtained by using an extended homoclinic test approach. A new mechanical feature of a two-solitary wave, namely, dependence of propagation direction and shape on position of equilibrium point, is investigated.
Received: 15 November 2011      Published: 04 April 2012
PACS:  02.30.Jr (Partial differential equations)  
  47.20.Ky (Nonlinearity, bifurcation, and symmetry breaking)  
  47.35.Lf (Wave-structure interactions)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/4/040201       OR      https://cpl.iphy.ac.cn/Y2012/V29/I4/040201
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
DAI Zheng-De
WU Feng-Xia
LIU Jun and MU Gui
[1] Ablowitz M J and Clarkson P A 1991 Solitons, Nonlinear Evolution Equations and Inverse Scattering (Cambridge: Cambridge University)
[2] Hirota R 1971 Phys. Rev. Lett. 27 1192
[3] Sawada K and Kotera T 1974 Prog. Theor. Phys. 51 1355
[4] Boiti M, Leon J, Manna M and Pempinelli F 1986 Inverse Prob. 2 271
[5] He J H 2008 Int. J. Mod. Phys. B 22 3487
[6] Zhang S 2008 Appl. Math. Comput. 188 1
[7] Zhang S 2008 Appl. Math. Comput. 197 128
[8] Dai Z D, Liu J and Li D L 2009 Appl. Math. Comput. 207 360
[9] Dai Z D, Li S L, Li D L and Zhu A J 2007 Chin. Phys. Lett. 24 1429
Related articles from Frontiers Journals
[1] Kai-Hua Yin, Xue-Ping Cheng, and Ji Lin. Soliton Molecule and Breather-Soliton Molecule Structures for a General Sixth-Order Nonlinear Equation[J]. Chin. Phys. Lett., 2021, 38(8): 040201
[2] Danda Zhang, Da-Jun Zhang, Sen-Yue Lou. Lax Pairs of Integrable Systems in Bidifferential Graded Algebras[J]. Chin. Phys. Lett., 2020, 37(4): 040201
[3] Zhou-Zheng Kang, Tie-Cheng Xia. Construction of Multi-soliton Solutions of the $N$-Coupled Hirota Equations in an Optical Fiber[J]. Chin. Phys. Lett., 2019, 36(11): 040201
[4] Zhou-Zheng Kang, Tie-Cheng Xia, Xi Ma. Multi-Soliton Solutions for the Coupled Fokas–Lenells System via Riemann–Hilbert Approach[J]. Chin. Phys. Lett., 2018, 35(7): 040201
[5] Zhao-Wen Yan, Mei-Na Zhang Ji-Feng Cui. Higher-Order Inhomogeneous Generalized Heisenberg Supermagnetic Model[J]. Chin. Phys. Lett., 2018, 35(5): 040201
[6] Yu Wang, Biao Li, Hong-Li An. Dark Sharma–Tasso–Olver Equations and Their Recursion Operators[J]. Chin. Phys. Lett., 2018, 35(1): 040201
[7] Zhong Han, Yong Chen. Bright-Dark Mixed $N$-Soliton Solution of the Two-Dimensional Maccari System[J]. Chin. Phys. Lett., 2017, 34(7): 040201
[8] Zhao-Wen Yan, Xiao-Li Wang, Min-Li Li. Fermionic Covariant Prolongation Structure for a Super Nonlinear Evolution Equation in 2+1 Dimensions[J]. Chin. Phys. Lett., 2017, 34(7): 040201
[9] Sen-Yue Lou. From Nothing to Something II: Nonlinear Systems via Consistent Correlated Bang[J]. Chin. Phys. Lett., 2017, 34(6): 040201
[10] Yun-Kai Liu, Biao Li. Rogue Waves in the (2+1)-Dimensional Nonlinear Schr?dinger Equation with a Parity-Time-Symmetric Potential[J]. Chin. Phys. Lett., 2017, 34(1): 040201
[11] Chao Qian, Ji-Guang Rao, Yao-Bin Liu, Jing-Song He. Rogue Waves in the Three-Dimensional Kadomtsev–Petviashvili Equation[J]. Chin. Phys. Lett., 2016, 33(11): 040201
[12] Ming-Zhan Song, Xu Qian, Song-He Song. Modified Structure-Preserving Schemes for the Degasperis–Procesi Equation[J]. Chin. Phys. Lett., 2016, 33(11): 040201
[13] HU Xiao-Rui, CHEN Jun-Chao, CHEN Yong. Groups Analysis and Localized Solutions of the (2+1)-Dimensional Ito Equation[J]. Chin. Phys. Lett., 2015, 32(07): 040201
[14] CHEN Hai, ZHOU Zi-Xiang. Darboux Transformation with a Double Spectral Parameter for the Myrzakulov-I Equation[J]. Chin. Phys. Lett., 2014, 31(12): 040201
[15] CHEN Jun-Chao, CHEN Yong, FENG Bao-Feng, ZHU Han-Min. Pfaffian-Type Soliton Solution to a Multi-Component Coupled Ito Equation[J]. Chin. Phys. Lett., 2014, 31(11): 040201
Viewed
Full text


Abstract