Chin. Phys. Lett.  2012, Vol. 29 Issue (3): 034502    DOI: 10.1088/0256-307X/29/3/034502
FUNDAMENTAL AREAS OF PHENOMENOLOGY(INCLUDING APPLICATIONS) |
Poincaré-MacMillan Equations of Motion for a Nonlinear Nonholonomic Dynamical System
Amjad Hussain1, Syed Tauseef Mohyud-Din2*, Ahmet Yildirim3,4
1Department of Mathematics, Zhejiang University, Hangzhou 310027
2Department of Mathematics, HITEC University, Taxila Cantt Pakistan
3Department of Mathematics, Ege University, 35100 Bornova Izmir, Turkey
4University of South Florida, Department of Mathematics and Statistics, Tampa, FL 33620-5700, USA
Cite this article:   
Syed Tauseef Mohyud-Din, Amjad Hussain, Ahmet Yildirim 2012 Chin. Phys. Lett. 29 034502
Download: PDF(360KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract MacMillan's equations are extended to Poincaré's formalism, and MacMillan's equations for nonlinear nonholonomic systems are obtained in terms of Poincaré parameters. The equivalence of the results obtained here with other forms of equations of motion is demonstrated. An illustrative example of the theory is provided as well.
Keywords: 45.50.-j      45.50.Dd     
Received: 23 November 2011      Published: 11 March 2012
PACS:  45.50.-j (Dynamics and kinematics of a particle and a system of particles)  
  45.50.Dd (General motion)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/3/034502       OR      https://cpl.iphy.ac.cn/Y2012/V29/I3/034502
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
Syed Tauseef Mohyud-Din
Amjad Hussain
Ahmet Yildirim
[1] MacMillan W D 1936 Dynamics of Rigid Bodies (New York: McGraw Hill) chap X p 332
[2] Mei F X 1984 Appl. Math. Mech. 5 1633
[3] Qiu Rong 1990 Appl. Math. Mech. 11 497
[4] Poincaré H 1901 Compt. Rend. Acad. Sci. 132 369 (in French)
[5] Chetaev N G 1941 Prikl. Mat. i Mekh. 5 253 (in Russian)
[6] Chetaev N G 1987 Theoretical Mechanics (Moscow: Nauka)
[7] Ghori Q K and Hussain M 1973 ZAMM J. Appl. Math. Mech. 54 311
[8] Ghori Q K and Hussain M 1973 ZAMM J. Appl. Math. Mech. 53 391
[9] Rumyantsev V V 1996 J. Appl. Math. Mech. 60 899
[10] Firdaus E U and Phohomsiri P 2007 Proc. R. Soc. A 463 1421
[11] Firdaus E U and Phohomsiri P 2007 Proc. R. Soc. A 463 1435
Related articles from Frontiers Journals
[1] XUE De-Sheng,ZHOU Zhao,GAO Mei-Zhen**. Accurate Period Approximation for Any Simple Pendulum Amplitude[J]. Chin. Phys. Lett., 2012, 29(4): 034502
[2] ZHANG Yun-Peng, DUAN Hai-Bin, **, ZHANG Xiang-Yin . Stable Flocking of Multiple Agents Based on Molecular Potential Field and Distributed Receding Horizon Control[J]. Chin. Phys. Lett., 2011, 28(4): 034502
[3] ZHANG Yi. Stability of Manifold of Equilibrium States for Nonholonomic Systems in Relative Motion[J]. Chin. Phys. Lett., 2009, 26(12): 034502
[4] YANG Yan, WU Guan-Hao, YU Yong-Liang, TONG Bing-Gang. Two-Dimensional Self-Propelled Fish Motion in Medium: An Integrated Method for Deforming Body Dynamics and Unsteady Fluid Dynamics[J]. Chin. Phys. Lett., 2008, 25(2): 034502
[5] CAO Bing-Yang, CHEN Min, GUO Zeng-Yuan. Rarefied Gas Flow in Rough Microchannels by Molecular Dynamics Simulation[J]. Chin. Phys. Lett., 2004, 21(9): 034502
Viewed
Full text


Abstract