CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
|
|
|
|
Raman Scattering Study of InxGa1−xN Alloys with Low Indium Compositions |
TENG Long**, ZHANG Rong**, XIE Zi-Li, TAO Tao, ZHANG Zhao, LI Ye-Cao, LIU Bin, CHEN Peng, HAN Ping, ZHENG You-Dou |
Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Department of Electronic Science and Engineering, Nanjing University, Nanjing 210093
|
|
Cite this article: |
ZHANG Zhao, ZHANG Rong, XIE Zi-Li et al 2012 Chin. Phys. Lett. 29 027803 |
|
|
Abstract InxGa1−xN alloys with low indium composition x in the range 0.13≤x≤0.23 are systematically studied mainly based on a Raman scattering technique. Scanning electron microscopy and x−ray diffraction results show that our samples can be divided into two groups: pseudomorphic (0.13≤x≤0.16) and relaxed (0.18≤x≤0.23). The prominent enhancement of A1 longitudinal−optical (LO) mode is found with 325 nm laser excitation. For pseudomorphic samples, the frequencies of A1 (LO) phonons agree well with the theoretical predictions, which verifies that the samples are fully strained. For relaxed InxGa1−xN samples, a linear dependence of the A1 (LO) mode frequency is obtained: Ω0 (x)=(740.8±3.3)−(143.1±16.0)x, which is the evidence of one-mode behavior in InxGa1−xN ternary alloys. Residual strains in these partially relaxed samples are also evaluated.
|
Keywords:
78.66.Fd
68.35.Ja
61.05.Cp
|
|
Received: 16 August 2011
Published: 11 March 2012
|
|
PACS: |
78.66.Fd
|
(III-V semiconductors)
|
|
68.35.Ja
|
(Surface and interface dynamics and vibrations)
|
|
61.05.cp
|
(X-ray diffraction)
|
|
|
|
|
[1] Nakamura S, Senoh M, Iwasa N et al 1995 Jpn. J. Appl. Phys. II 34 L1332
[2] Wu J, Walukiewicz W, Yu K M, Lu H et al 2002 Appl. Phys. Lett. 80 4741
[3] Hiroshi H 2002 J. Phys. : Condens. Matter 14 967
[4] Wu J, Walukiewicz W et al 2003 J. Appl. Phys. 94 6477
[5] Chen D J, Liu B, Lu H, Xie X Z et al 2009 IEEE Electron. Device Lett. 30 605
[6] Luo W, Liu B, Xie Z L et al 2008 Appl. Phys. Lett. 92 262110
[7] Ho I, Stingfellow G B 1996 Appl. Phys. Lett. 69 2701
[8] Kaschner A, Hoffmann A and Thomsen C 1999 Appl. Phys. Lett. 75 3602
[9] Pereira S, Correia M R, Monteiro T et al 2001 Appl. Phys. Lett. 78 2137
[10] Hernández S, Cuscó R, Pastor D and Artús L 2005 J. Appl. Phys. 98 013511
[11] Liu B, Luo W J, Zhang R et al 2010 Phys. Status Solidi C 7 1817
[12] Qin Z, Chen Z, Tong Y, Lu S et al 2002 Appl. Phys. A 74 655
[13] Reed M J, El Masry N A et al 2000 Appl. Phys. Lett. 77 4121
[14] Behbehani, Piner M K, Liu E L et al 1999 Appl. Phys. Lett. 75 6951
[15] Correia M R, Pereira S and Pereira E 2003 Appl. Phys. Lett. 83 4761
[16] Yoshikawa M, Murakami M et al 2009 Appl. Phys. Lett. 94 1908
[17] Cherns D, Henley S J et al 2001 Appl. Phys. Lett. 78 2691
[18] Sonderegger S, Feltin E, Merano M et al 2006 Appl. Phys. Lett. 89 2109
[19] Pereira S, Correia M R, Pereira E, 2002 Appl. Phys. Lett. 80 3913
[20] C A Parker, J C Roberts, and S M Bedair 1999 Appl. Phys. Lett. 75 2776
[21] Schuster M, Gervais P O, Jobst B, 1999 J. Phys. D: Appl. Phys. 32 A56
[22] Alexson D, Bergman L et al 2001 J. Appl. Phys. 89 798
[23] Davydov V Y, Kitaev Y E et al 1998 Phys. Rev. B 58 12899
[24] Davydov V Y, Emtsev V V et al1999 Appl. Phys. Lett. 75 3297
[25] Hernández S, Cuscó R et al 1998 Phys. Rev. B 58 15283
[26] Briggs R J and Ramdas A K 1976 Phys. Rev. B 13 5518
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|