Chin. Phys. Lett.  2012, Vol. 29 Issue (12): 128901    DOI: 10.1088/0256-307X/29/12/128901
CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Topological and Spectral Perturbations in Complex Networks
YAN Xin**, WU Yang
Department of Computer Science, Wuhan University of Technology, Wuhan 430063
Cite this article:   
YAN Xin, WU Yang 2012 Chin. Phys. Lett. 29 128901
Download: PDF(481KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract Recently many network perturbation techniques, mainly involving topological and spectral perturbations, have been employed to analyze and improve the robustness of complex networks. However, to the best of our knowledge, the relationship between topological perturbation and spectral perturbation has not been studied intensively so far. We introduce a new robustness measure, subgraph centrality defined by eigenvalue spectrum, to investigate the impact of topological perturbation on eigenvalue spectrum. A specific definition of spectral perturbation is given, such that we can examine the impact of spectral perturbation on topological property by a measure of topological performance: global efficiency. Our main finding is that the spectral perturbations we define are equivalent to the conventional topological perturbations, especially for scale-free networks
Received: 02 July 2012      Published: 04 March 2013
PACS:  89.75.Fb (Structures and organization in complex systems)  
  02.70.Hm (Spectral methods)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
TRENDMD:   
URL:  
https://cpl.iphy.ac.cn/10.1088/0256-307X/29/12/128901       OR      https://cpl.iphy.ac.cn/Y2012/V29/I12/128901
Service
E-mail this article
E-mail Alert
RSS
Articles by authors
YAN Xin
WU Yang
[1] Newman M E J 2003 SIAM Rev. 45 167
[2] Zhao Q B Zhang X F Sui D N, Zhou Z J et al 2012 Chin. Phys. Lett. 29 048702
[3] Zhang C Shen H Z Li F and Yang H Q 2012 Acta Phys. Sin. 61 148902 (in Chinese)
[4] Shargel B, Sayama H, Epstein I R and Bar-Yam Y 2003 Phys. Rev. Lett. 90 068701
[5] Paul G, Tanizawa T, Havlin S and Stanley H E 2004 Eur. Phys. J. B 38 187
[6] Boccaletti S, Latora V, Moreno Y, Chaves M and Hwang D U 2006 Phys. Rep. 424 175
[7] Restrepo J G, Ott E and Hunt B R 2006 Phys. Rev. Lett. 97 094102
[8] Van Mieghem P 2011 Graph Spectra for Complex Networks (New York: Cambridge University Press)
[9] Ngo K V 2005 Appl. Numer. Anal. Comput. Math. 2 108
[10] Milanese A, Sun J and Nishikawa T 2010 Phys. Rev. E 81 046112
[11] Costa L F Rodrigues F A Travieso G and Villas Baos P R 2007 Adv. Phys. 56 167
[12] Jamakovic A and Van Mieghem P 2008 Networking 4982 183
[13] Estrada E and Rodriguez-Velazquez J A 2005 Phys. Rev. E 71 056103
[14] Brouwer A E and Haemers W H 2011 Spectra of Graphs (New York: Springer)
[15] Albert R Jeong H and Barabasi A L 2000 Nature 406 378
[16] Hu B Li F and Zhou H S 2009 Chin. Phys. Lett. 26 128901
[17] Holme P, Kim B J, Yoon C N and Han S K 2002 Phys. Rev. E 65 056109
[18] Latora V and Marchiori M 2005 Phys. Rev. E 71 015103
[19] Van Mieghem P, Omic J and Kooij R 2009 IEEE/ACM Trans. Network. 17 1
[20] Liu D, Wang H and Van Mieghem P 2010 Phys. Rev. E 81 016101
[21] Crucitti P, Latora V, Marchiori M and Rapisarda A 2000 Physica A 320 622
Related articles from Frontiers Journals
[1] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks[J]. Chin. Phys. Lett., 2020, 37(6): 128901
[2] Xiu-Lian Xu, Jin-Xuan Shi . Characterization of the Topological Features of Catalytic Sites in Protein Coevolution Networks *[J]. Chin. Phys. Lett., 0, (): 128901
[3] Ai-Zhi Liu, Yan-Ling Zhang, Chang-Yin Sun. Way of Breaking Links in the Evolution of Cooperation[J]. Chin. Phys. Lett., 2018, 35(9): 128901
[4] Jin-Fa Wang, Xiao Liu, Hai Zhao, Xing-Chi Chen. Anomaly Detection of Complex Networks Based on Intuitionistic Fuzzy Set Ensemble[J]. Chin. Phys. Lett., 2018, 35(5): 128901
[5] Lin-Lin Wei, Shuai-Shuai Sun, Kai Sun, Yu Liu, Ding-Fu Shao, Wen-Jian Lu, Yu-Ping Sun, Huan-Fang Tian, Huai-Xin Yang. Charge Density Wave States and Structural Transition in Layered Chalcogenide TaSe$_{2-x}$Te$_{x}$[J]. Chin. Phys. Lett., 2017, 34(8): 128901
[6] Wen Xiao, Chao Yang, Ya-Ping Yang, Yu-Guang Chen. Phase Transition in Recovery Process of Complex Networks[J]. Chin. Phys. Lett., 2017, 34(5): 128901
[7] Chang-Quan Chen, Qiong-Lin Dai, Wen-Chen Han, Jun-Zhong Yang. Evolutionary Games in Two-Layer Networks with the Introduction of Dominant Strategy[J]. Chin. Phys. Lett., 2017, 34(2): 128901
[8] Jian Jiang, Rui Zhang, Long Guo, Wei Li, Xu Cai. Network Aggregation Process in Multilayer Air Transportation Networks[J]. Chin. Phys. Lett., 2016, 33(10): 128901
[9] Rui-Wu Niu, Gui-Jun Pan. Self-Organized Optimization of Transport on Complex Networks[J]. Chin. Phys. Lett., 2016, 33(06): 128901
[10] Xiu-Lian Xu, Chun-Ping Liu, Da-Ren He. A Collaboration Network Model with Multiple Evolving Factors[J]. Chin. Phys. Lett., 2016, 33(04): 128901
[11] Yi-Run Ruan, Song-Yang Lao, Yan-Dong Xiao, Jun-De Wang, Liang Bai. Identifying Influence of Nodes in Complex Networks with Coreness Centrality: Decreasing the Impact of Densely Local Connection[J]. Chin. Phys. Lett., 2016, 33(02): 128901
[12] ZHANG Wen, LI Yao-Sheng, XU Chen. Co-operation and Phase Behavior under the Mixed Updating Rules[J]. Chin. Phys. Lett., 2015, 32(11): 128901
[13] FANG Pin-Jie, ZHANG Duan-Ming, HE Min-Hua, JIANG Xiao-Qin. Exact Solution for Clustering Coefficient of Random Apollonian Networks[J]. Chin. Phys. Lett., 2015, 32(08): 128901
[14] BAI Liang, XIAO Yan-Dong, HOU Lv-Lin, LAO Song-Yang. Smart Rewiring: Improving Network Robustness Faster[J]. Chin. Phys. Lett., 2015, 32(07): 128901
[15] DU Peng, XU Chen, ZHANG Wen. Cooperation and Phase Separation Driven by a Coevolving Snowdrift Game[J]. Chin. Phys. Lett., 2015, 32(5): 128901
Viewed
Full text


Abstract